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ABSTRACT

The quantification of appearance and geometrical changes between structures captured across several images
relies on the determination of correspondences between these image structures. Automatic methods for
establishing sparse and dense spatial correspondences are feature tracking and image registration, respectively.
Main registration challenges are weak image features, complex appearance change, large shape changes, and
huge images. These challenges can make the problem intractable. We present approaches to overcome these
challenges for registration tasks including microtomography images. Applications include assessing tissue changes
due to embedding material, comparison of microtomography with optical microscopy images, and optimization
of process parameters for materials.

Keywords: Image registration, X-ray virtual histology, synchrotron radiation, hard X-ray microtomography,
volumetric imaging

1. INTRODUCTION

Image registration is the method to determine dense spatial correspondences between two or more images. It is
required whenever images or image regions need to be compared in detail. Image registration applications include
quantification of volume and shape changes, fusion of information from several image modalities and/or multiple
tissue states, motion quantification, detection of patterns, and segmentation propagation by registration. Here
we describe our experiences with registration of micro computed tomography (µCT) images, which can pose the
additional challenges of huge image sizes and limited soft-tissue contrast.1

Regularization optimization. Tissue deformations require transformation models with many degrees of
freedom (DOFs) to be locally adaptive.2 The selected image similarity measure will improve for registrations
with more DOFs thanks to the increased number of free parameters and hence image similarity cannot be
employed as an evaluation measure.3–5 It is very important to have realistic transformations, as these act as
interpolation functions when no evidence from the image exist, e.g. in homogeneous image regions. We have
compared two approaches for this trade-off namely regularization versus reduction of degrees of freedom, and
determined in an unsupervised way the more suitable approach and amount of regularization.6

Distributed multi-resolution approach. µCT images are often very large in size, e.g. to cover a mouse
brain with an isotropic voxel resolution of 0.65 µm an image of size of approximately 15,000 × 15,000 × 14,800
voxels = 3.3 teravoxels is required, i.e. a file size of 6.6 TB for 16 bits encoding. Registration of such huge
images often leads to problems, as the images and their spatial transformation exceed memory limits and/or
cause excessive runtimes. We therefore developing a distributed multi-resolution approach, in the spirit of
image and transformation multi-resolution pyramids, where registrations of large image regions are distributed
to independent tasks to avoid violating memory limitations. Challenges of such a distributed multi-resolution
registration approach include keeping track of regions, composing transformations from coarse to fine resolutions,
and fusing local results.

*Send correspondence to C.T., e-mail: christine.tanner@unibas.ch, Telephone: +41 61 207 54 34, www.bmc.unibas.ch

Invited Paper

Developments in X-Ray Tomography XIV, edited by Bert Müller, Ge Wang, Proc. of SPIE Vol. 12242, 122420T
© 2022 SPIE · 0277-786X · doi: 10.1117/12.2633922

Proc. of SPIE Vol. 12242  122420T-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Multi-modal image registration. Very useful information can be gained by combining the information from
different image modalities as these modalities probe various properties of the tissue, e.g. density from µCT, water
content from T1-weighted Magnetic Resonance Imaging (MRI), water diffusion from diffusion-weighted MRI,
tracer uptake from Positron Emission Tomography (PET), and function information from histological stains.
Such fused multi-spectral images do improve differentiation of tissue types.7 Yet this requires determining
accurate spatial correspondence, which is difficult as the appearance of the images is vastly dissimilar and
hence image similarity measures are hard to devise. Learning these similarities requires a suitable training
data of dense correspondences,8,9 which realistically can only be provided by simultaneous image acquisitions
and simulations of realistic transformations. Feature-based registration approaches often suffer from nonlinear
intensity variations9 and provide for the investigated sample in initial tests unsatisfactory results.10 Instead,
we employed manually determined correspondences of landmarks for guiding the intensity-based deformable
registration.

Missing correspondences. Quantification of material removal or addition via image registration has the issue
of missing correspondences. Hence it is important to be able to define the image region which is present in both
images, such that image registration is only optimized for the selected region.

2. MATERIALS AND METHODS

2.1 Materials

Mouse brains. The mouse brain stems from an experiment with approval of the veterinary office of the
Canton of Zurich (license number ZH067/17). After death, the brain was extracted from a seven-month-old
male C57BL/6J mouse (Janvier Labs, Le Genest-Saint-Isle, France) and fixed by immersion in 4% formaldehyde
solution (Sigma Aldrich, Darmstadt, Germany) and subsequently immersed in 50%, 70%, 80%, 90%, and 100%
ethanol solutions and xylene for two hours each (Carl Roth GmbH, Karlsruhe, Germany).2

Rat jaw. This work includes images after stem cell-mediated distraction of the right half jaw of Rat 1, see
Rodgers et al.7 Images of the jaw in formalin and paraffin were acquired before and after its decalcification,
respectively.

Aligners. The upper jaw of a subject was scanned with the intraoral scanner Medit i500 (Medit Corp.,
Seoul, South Korea), a 3D surface model was created from the interoral scan, and eight copies of the model
were printed using the stereolithographic printer Formlabs Form3 (Formlabs, Somerville, Massachusetts). Eight
NaturAligners® were thermoformed on the dental models with a pressure molding device (Biostar, Scheu-Dental,
Iserlohn, Germany) at temperatures ranging from 112 ◦C to 201 ◦C and for foil thicknesses of 500 and 750 µm.11

Teeth. Sixteen not worth preserving teeth were extracted during clinical interventions, cleaned with an
ultrasonic hand piece and freed from soft-tissue. Each tooth showed one to three independent caries lesions,
resulting in a total of 23 lesions, which were manually removed following the principles of tooth preparation.12

2.2 Image Acquisition

Mouse brains. Hard X-ray microtomography was performed at theAnatomix beamline (Synchrotron Soleil,
Gif-sur-Yvette, France).13 An undulator gap of 10.3 mm and a 20 µm Au filter were selected to create a
polychromatic beam with mean energy around 22 keV. Radiographs were recorded on a detector consisting of a
300 µm LuAG scintillator coupled to a scientific CMOS camera (Hamamatsu Orca Flash 4.0 V2, 2048 × 2048
pixels, 6.5 µm physical pixel size) by two photo objectives in tandem geometry (Hasselblad HC 4/210 and HC
2.2/100, 0.22 numerical aperture).14 The resulting magnification factor was 2.1, yielding an effective pixel size
of 3.1 µm.

For tomographic imaging, 5,900 projections were acquired with continuous 360◦ rotation about an off-center
axis to nearly double the detector field-of-view. The exposure time was 50 ms and a single scan took seven
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minutes. The field-of-view was extended vertically to image the entire brain by stitching together three to four
height steps.

Tomographic reconstruction was done in Matlab (The MathWorks, Inc., Natick, USA) using the filtered
backprojection algorithm with the standard Ram-Lak filter. To reduce noise at the expense of spatial resolution,
a Gaussian filter with σ = 1.25 pixels was applied to the unbinned data.15 To reduce dataset size, another
reconstruction was done with projections binned by a factor of 3 prior to reconstruction, i.e. with effective pixel
size of 9.3 µm.

Rat jaw. Before decalcification, the rat jaw sample was imaged with a phoenix nanotom m (GE Sensing
& Inspection Technologies GmbH, Wunstorf, Germany) laboratory microtomography systen. An acceleration
voltage of 100 kVp and a beam current of 100 µA were selected. Tomographic acquisition consisted of 2,000
equiangular projections around 360◦ rotation with an exposure time of 0.5 seconds per frame. Total acquisition
time was about 100 minutes. An effective pixel size of 6.9 µm was selected to allow for imaging of the entire
sample. Projections were binned by a factor of four and tomograms were reconstructed using the software
phoenix datos|x (GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany). The reconstruction
software used a modified Feldkamp algorithm and provided ring-artefact and beam-hardening corrections. The
resulting reconstruction had an effective pixel size of 27.6 µm.

The decalcified rat jaw was imaged at the beamline BW 2 (HASYLAB at DESY, Hamburg, Germany).16

Absorption contrast mode was used at a photon energy of 14 keV. Tomography was done with an off-set rotation
axis to fit the full sample within the field-of-view. A magnification of 1.76 was used, providing an effective
pixel size of 5.2 µm and a spatial resolution of 9.4 µm. Tomographic imaging consisted of 1,440 equally spaced
projections around 360◦ of rotation. Before reconstruction with a filtered back-projection, projections were
binned by a factor of two to increase signal-to-noise ratio.17 Reconstructed volumes were also binned by a factor
of two to reduce image size, thus the final pixel size was 20.6 µm.

After tomographic imaging, the rat jaws were sliced along the horizontal plane into sections using a microtome
Leica SM2010R (Leica Instruments GmbH, Nussloch, Germany). This slicing plane was selected because it
contained both osteotomy sites and the complete distraction gap zone. Paraffin-embedded sections had a
thickness of 2 µm and were stained with Hematoxylin and Eosin (H&E). Histology slides were imaged at
20× magnification using a plan-apochromatic objective using a Panoramic MIDI (3DHistech Ltd., Budapest,
Hungary) slide scanner.

Aligners. We acquired two sets of tomographic data per aligner, namely the aligner mounted on the model
(model + aligner) and the model without an aligner (model). Tomographic data acquisition was performed with
nanotom m (phoenix—x-ray, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany), equipped with
a nanofocus tube. We employed an acceleration voltage of 90 kVp and a beam current of 200 µA. The effective
pixel length of the radiographs was set to 33 µm and resulted in (33 µm)3 voxels. The mean photon energy
was increased by implementing a 0.5-mm-thick aluminum film behind the transmission target. A set of 2,000
radiographs was taken along 360 deg with an exposure time of 2 seconds per projection.

Teeth. For the analysis of caries removal and fillings, a total of 16 teeth were imaged. Each tooth was scanned
three times, i.e. before treatment, after caries removal and after filling, using the SkyScan 1275 (Bruker, Belgium)
commercial µCT system. Depending on tooth size, acceleration voltages between 60-75 kVp, beam currents of
133-166 µA, and pixel sizes between 9 and 13 µm were selected. Either aluminium or bronze filters were used to
limit beam hardening artefacts. Scan times varied between 15 minutes and nearly 7 hours, as differing exposure
times from 75 to 4000 ms and number of frames to average from 4 to 9 were needed to provide satisfactory
signal-to-noise ratio.

Reconstruction, ring artefact removal, and beam hardening correction were performed using the SkyScan
NRecon software package (Version 1.7.4, Bruker, Kontich, Belgium).
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2.3 Image Registration

We have used the open source registration software elastix18,19 (version 5.0) extensively, as it is easy to
install and run, is well-documented with online resources, and runs relatively fast, even for GB-sized images
with complex transformation models. In addition to the standard registration functionalities, it also has useful
features such as definition of image regions to be registered and the incorporation of landmark correspondences
in the optimization function.

Regularization optimization. The process of fixation and embedding of tissue for histological analysis
changes the tissue properties. The effects of such a process, from formalin fixation to paraffin embedding via
a ascending alcohol series, were captured and analyzed for a mouse brain with µCT by Rodgers et al.2,6, 20,21

As local volume and intensity changes are expected, we employed a deformable transformation model, namely a
grid of displacements vectors interpolated by B-Splines,22 and mutual information (MI)23–25 as image similarity
measure. Alignment was optimized within the brain region using a mask to ignore surrounding media and
sample container.20,21 Regularization can be performed by reducing the number of grid points or by introducing
a penalty term into the optimization function. We investigated the amount and type of regularization based on
L-curve optimization26 and Pareto efficiency.20

Registration of huge images. We are developing a distributed multi-resolution registration approach to cope
with huge images. In the case of microtomography, these may come from mosaic-styled extended field-of-view
acquisitions, which often result in teravoxel-sized datasets.27–29 First, images are downsampled to a size such
that they and the required transformation files fit into memory during image registration. Image registration
is then performed for these low-resolution images. The resulting transformation provides the corresponding
coordinates in the moving space, which can be used to define corresponding local regions, see Fig. 1 top. Region
of interest in the high-resolution images can then be transformed based on the low-resolution registration result
and/or independently registered if the degree of downsampling precludes accurate registration of fine structures,
as illustrated in Fig. 1 bottom.

Figure 1. Illustration of framework for
distributed multi-resolution image regis-
tration or transformation. (top) Regis-
tration is performed with downsampled
images to fit in available memory. Given
a local region in fixed space (red box,
blue box), the resulting transformation
provides the corresponding coordinates in
moving space (yellow box). (bottom)
Registration in high resolution space is
then preformed between the red box and
the green box enclosing the yellow box, as
the transformed coordinates in the moving
space can cover a skewed region with
respect to the grid of the moving image.
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Multi-modal image registration. We employed manually selected pairs of landmark to guide multi-modal
image registration to study bone regrowth patterns.7 For 3D-3D registration of µCT images a rat jaw before
and after decalcification, we optimized non-rigid image registration with respect to maximizing normalized cross
correlation and minimizing the distance between 50 landmark pairs within the elastix framework (version 4.9).
For registration of the 2D histology image to the 3D µCT image of a decalcified rat jaw, we used 50 landmark pairs
to find the corresponding deformed slice in the 3D image via rigid and affine image registration, and a thin-plate
spline fit.10 Final non-rigid registration of the extracted µCT slice was performed via elastix optimizing only
for mutual information, i.e. without considering the landmarks.

Missing correspondences - Aligners. We performed an analysis of the thickness of NaturAligners® with
550 µm (NA.550) or 750 µm (NA.750) initial foil thickness and four temperatures during the thermoforming
process.11 The segmentation of the aligner required image registration, as the aligner and the model had very
similar densities and hence µCT image intensities. This could not be avoided, as neither the 3D printing
material for the model nor the NaturAligners® itself were allowed to be substantially changed to make the
densities dissimilar. To avoid finding false correspondences between the dental model and aligner, we restricted
the rigid registration to the bottom region of the model.

Missing correspondences - Teeth. The amount of remaining caries was analyzed after mechanical removal
by µCT images for 16 extracted teeth to provide feedback on the manual treatment.12 We registered the three
states of each tooth, i.e. before caries removal, after caries removal, and after filling, in order to determine the
amount of removed and filled material, and to enable visual inspection of the rim region within the context of
its surrounding tissue. After manual pre-alignment with ITK-SNAP30 (version 3.8.0), we automatically rigidly
registered the tooth states with elastix by optimizing normalized correlation coefficient within the common
region, i.e. after caries removal, to avoid mismatches to the removed or filled tissue.

3. RESULTS AND DISCUSSION

Regularization optimization. We tested bending energy penalty weights λ from 0 to 562 (at a grid spacing
of 12 pixels) and grid spacings from 12 to 48 pixels (at λ = 0) to determine the amount and type of regularization.
Plotting the resulting bending energy values versus the image dissimilarity measure (-MI), both min-max
normalized, one gets a L-shaped curve26 with the optimum at position [0 0], i.e. at the maximum mutual
information and minimum bending energy, see Fig. 2. Fitting an exponential decaying function, one can observe
that the optimum regularization is close to λ = 46, and that using a penalty on bending energy provides improved
image similarity over reducing grid spacing, i.e. is Pareto efficient. Fig. 3 shows that little regularization, i.e.
λ = 0, creates unrealistic volumetric strain patterns, while not improving image alignment.

While the optimal value for the regularization parameter is problem-specific, improving image similarity
without introducing unnecessary deformations is a general trade-off in image registration. Controlling this
trade-off via a regularization term instead of only reducing grid spacing has the advantage of greater local
flexibility, i.e. larger deformations are possible locally if they improve image similarity considerably.
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Figure 2. Unsupervised optimization of regularization via
L-curve. Fitting an exponential decaying function to results
of bending energy (BE) versus image dissimilarity negative
mutual information (MI), both min-max normalized, for
various grid spacings (12 to 48 pixels, λ = 0, red circles)
and bending energy penalties (λ from 0 to 562, 12 pixels
grid spacing, blue diamonds), one can determine the optimal
regularization (closest point to [0 0], black star).

Figure 3. Illustration of volumetric strain and alignment for region with most improved mutual information with respect
to highest regularization (λ = 562) after registration of xylene-embedded to formalin-fixated mouse brain.
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Registration of huge images. For the mouse brain, an image resolution of 3.1 µm and a B-Spline
transformation model with finest resolution of 12 pixels, images required 3× binning to fit into memory. We
used the distributed multi-resolution registration approach to warp full-resolution, i.e. unbinned, image regions
with the low resolution registration result to enable comparison of fine structures,6 see Fig. 4. Note that these
sub-regions can be additionally registered if necessary to achieve satisfactory correspondence of fine structures
such as individual cells.

Figure 4. (top) Illustration of non-rigid alignment between (left) formalin-fixed and (right) ethanol-dehydrated mouse
brain after registering the full images downsampled to 9.3 µm pixel resolution. (bottom) Applying the low resolution
registration result to regions of the 3.1 µm images allows comparison of finer structures.
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Multi-modal image registration We studied bone regrowth patterns in the jaw of a rat via µCT and
histology imaging.7 µCT images were acquired before and after decalcification of the jaw. Image appearance
changed dramatically, with µCT images before decalcification showing only bones, while after decalcification
soft-tissue becomes visible, see Fig. 5. Purely intensity-based image registrations failed due to this large
appearance change. We therefore optimized the registration to stay close to the manually determined
corresponding landmark pairs, while also improving image similarity (normalized cross-correlation).

Landmarks were also employed for extracting the deformed µCT slice corresponding to histology slice and
perform a rigid and affine alignment. The final non-rigid alignment was purely intensity based. Fig. 6 top shows
that the landmark distances reduce as expected for the rigid and affine registration, but also slightly for the final
affine + non-rigid registration where they were not used. The improved alignment of the histology contours with
the µCT features with progression of registration can be seen in the middle and bottom row. Registration of
these three modalities enabled visual comparison and fusion of image information.7

Figure 5. (Left) Rigid and (right) non-rigid registration results of images from rat jaw before decalcification (outer
columns) and after decalcification (middle columns) from Rodgers et al.7
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Figure 6. Multimodal image registration of 3D µCT image and 2D histology slice. (top) Distance error distribution
and location of corresponding landmark pairs (green histology, red µCT). (middle, bottom) Alignment between histology
image (left, contour) and µCT image after rigid, affine and affine+non-rigid registration.

Missing correspondences - Aligners. We registered the model to the model+aligner µCT images to segment
the aligner, as model and aligner had very similar densities and hence image appearance, see Fig. 7(a). To avoid
that the model was inadvertently registered with the aligner, we restricted the rigid registration to the bottom
region of the model, see example overlay in Fig. 7(b). Taking the difference image after registration allows
segmentation of the aligner and subsequent analysis of its thickness, see Fig. 7(c).

Missing correspondences - Teeth. Fig. 8 shows the results from rigidly registering a molar (tooth number
28) before and after removal of caries, and after filling. The difference images clearly show that the removed
or filled tissue can be well discriminated. This allows automatic quantification of the removed or filled tissue
volume and supports visual inspection of the rim region within the context of the removed tissue. Thresholding
the difference image via Otsu’s method31 and keeping the largest connected component provides a volume of
9.0 mm3 and 9.1 mm3 for the removed and filled material, respectively. As determined by sparse manual
segmentation, which was automatically shape interpolated,32 the remaining caries is 2.7 % with respect to the
rim region for this lesion. In contrast, the median value of remaining caries for all 23 lesions is 0.9%.
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(a)

(b) (c)

Figure 7. Thickness analysis for NaturAligners® with initial foil thickness of 550 µm. (a) Sagittal cut through model +
aligner for processing temperatures (left→right) 112 ◦C, 142 ◦C, 173 ◦C and 200 ◦C. (b) Orthogonal slices after registration
of model (yellow contours) to model + aligner (image) for 112 ◦C to enable segmentation of aligner. (c) Color-coded
thickness in µm of aligner with processing temperature 200 ◦C.

(a) (b) (c)

(d) (e) (f)

Figure 8. Orthogonal virtual cuts of registered tooth (a) before treatment, (b) after caries removal, and (c) after filling.
Registration allows (d,f) automatic quantification of removed and filled tissue volumes (green contours) and (e) determining
rim region (blue contours) within the context of the removed tissue for sparse manual segmentation of remaining caries
(red contours), which was automatically interpolated (yellow contours).
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4. CONCLUSION

Quantifying change between images or combining information from several images requires establishing dense
spatial correspondences between the images, i.e. image registration. In this work, we reported how we overcome
various challenges when registering µCT images for several applications. Few datasets with missing dense
ground truth transformations and changing applications prohibit exploiting deep learning methods. Instead
we successfully relied on analyzing the problem and devising a suitable approach. These included exploiting
L-curve optimization and Pareto efficiency to determine the amount and type of regularization, developing
a distributed multi-resolution registration framework, incorporation of manually determined landmarks where
needed, and optimizing registration only with respect to the region present in both images.

Progress for accurate fully automatic multi-modal deformable image registration will rely on building a
dedicated databases of well registered images to learn the relationship between image modalities for healthy and
abnormal structures. Semi-automatic registration approaches, as presented in the work, will support creating
such valuable datasets.
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for annotation of manual landmarks, Rémi Ammann for the preparation of the NaturAligners® and manual
determination of aligner thickness for validation of the automatic method, and Andrés Izquierdo for teeth
treatment and manual segmentation of the residual caries.

REFERENCES

[1] Müller, B., Deyhle, H., Lang, S., Schulz, G., Bormann, T., Fierz, F. C., and Hieber, S. E.,
“Three-dimensional registration of tomography data for quantification in biomaterials science,” Int. J.
Mater. Res. 103(2), 242–249 (2012).

[2] Rodgers, G., Kuo, W., Schulz, G., Scheel, M., Migga, A., Bikis, C., Tanner, C., Kurtcuoglu, V., Weitkamp,
T., and Müller, B., “Virtual histology of an entire mouse brain from formalin fixation to paraffin embedding.
Part 1: Data acquisition, anatomical feature segmentation, global volume and density tracking,” J. Neurosci.
Methods 364, 109354 (2021).

[3] Schnabel, J. A., Tanner, C., Castellano-Smith, A. D., Degenhard, A., Leach, M. O., Hose, D. R., Hill, D. L.,
and Hawkes, D. J., “Validation of nonrigid image registration using finite-element methods: application to
breast MR images,” IEEE Trans. Med. Imag. 22(2), 238–247 (2003).

[4] Rohlfing, T., “Image similarity and tissue overlaps as surrogates for image registration accuracy: widely
used but unreliable,” IEEE Trans. Med. Imag. 31(2), 153–163 (2011).

[5] Pluim, J. P., Muenzing, S. E., Eppenhof, K. A., and Murphy, K., “The truth is hard to make: Validation
of medical image registration,” in [Int. Conference on Pattern Recognition ], 2294–2300, IEEE (2016).

[6] Rodgers, G., Schulz, G., Kuo, W., Scheel, M., Kurtcuoglu, V., Weitkamp, T., Müller, B., and Tanner,
C., “Non-rigid registration to determine strain fields during mouse brain fixation and embedding,” in
[Bioinspiration, Biomimetics, and Bioreplication XI ], 11586, 55–64, SPIE (2021).

[7] Rodgers, G., Sigron, G. R., Tanner, C., Hieber, S. E., Beckmann, F., Schulz, G., Scherberich, A., Jaquiéry,
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