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ABSTRACT

Mammalian brains are extremely complex: a mouse brain contains one hundred million neurons. Mapping an
entire brain’s three-dimensional cytoarchitecture from the nano- to centimeter-scale is a monumental challenge.
For standard microtomography with sub-µm pixel size, reconstructed volume is limited to about a few mm3.
For full brain mapping, even for the mouse brain with volume of 450 mm3, the field-of-view must be significantly
increased in all three dimensions. We demonstrate mosaic tiling to extend imaged volume by 400× and a
dedicated pipeline to process these tera-voxel sized datasets. Here, an entire mouse brain was imaged with
0.65 µm-wide voxels. The datasets, which are 6 TB in size at 16-bit depth, contain a wealth of microanatomical
information but present challenges for registration and segmentation.

Keywords: X-ray virtual histology, field-of-view, hierarchical imaging, mosaic, mouse brain, synchrotron radi-
ation, brain atlas, neuroimaging

1. INTRODUCTION

Neuroimaging is critical for decoding the brain’s structure-function relationship.1 However, even for smaller
mammals such as mice, comprehensive brain mapping requires imaging over multiple orders of magnitude. For
example, the width of the entire mouse brain is on the order of 10 mm, the size of cells is typically on the order of
µm, synaptic connections can be thinner than 100 nm, and morphological changes on the order of a few nm can
affect brain circuit function.1 Therefore, a combination of imaging techniques are used to visualize the three-
dimensional cytoarchitecture of the brain. Among these, virtual histology based on X-ray microtomography holds
promise as a post mortem modality that can provide volumetric brain imaging with isotropic µm resolution.2–6

However, current results mostly explore brain volumes on the order of tens of mm3, while the volume of the
mouse brain is around 450 mm3.7 Thus, the extension of microtomography for full-brain mapping has generated
considerable interest in recent years.8–12

While hard X-ray penetration of soft tissues theoretically allows for microtomography of entire centimeter-
sized brains, the field-of-view (FOV) is typically limited by detector array size. Standard detector arrays consist
of a few thousand pixels in each direction, e.g. the Hamamatsu Orca Flash 4.0 V2 currently employed at the
Anatomix beamline of Synchrotron Soleil13,14 consists of a 2048 × 2048 array of 6.5 µm-wide pixels. Using
10× magnification and a single detector FOV, 0.65 µm pixel size and down to 1.5 µm resolution can be achieved
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with FOV of 1.3×1.3×1.3 mm3. Such a local tomography scan already holds rich microanatomical information,
see Figure 1. An off-axis acquisition can extend reconstructed volume to 2.5× 2.5× 1.3 mm3. Still, the volume
of the mouse brain is about 200× larger, therefore the FOV must be significantly extended for brain mapping.

Translation of the sample along the axis of rotation allows for extension of FOV via helical scans or, more
commonly, stitching reconstructions from several height steps. Extending the FOV orthogonal to the rotation
axis can be accomplished by either stitching reconstructions of local tomography scans15,16 or building mosaic
projections with a common center-of-rotation (COR) prior to reconstruction.8,17 The former allows for standard
reconstruction provided by most microtomography beamlines, though corrections are needed for well-known local
tomography artefacts from truncated sinograms18–20 and dedicated software for non-rigid stitching is required if
the sample is deformed during acquisition.16 The latter is considered to be more dose- and time-efficient,9 though
it requires a dedicated pipeline for mosaic stitching of projections and reconstruction of large datasets.8,11,17

This work presents the development of a custom reconstruction pipeline for mosaic-style tomographic re-
construction of entire organs with cellular resolution. Here, we discuss data acquisition, data treatment, and
implementation of this reconstruction pipeline. Finally, we demonstrate the reconstruction of the entire mouse
brain with 0.65 µm-wide voxels.

Figure 1. Volume rendering of a local tomography scan with 0.65 µm-wide voxels within the cerebellum of a formalin-
fixed mouse brain. The Purkinje cell layer (gray, cells are about 10 µm in width) as well as the vasculature (red) are
clearly visible. The rendering represents a cropped field-of-view of approximately 1 mm3, while the volume of the entire
mouse brain is around 450 mm3. Measurements were performed at the Anatomix Beamline13,14 of Synchrotron Soleil
(Saint-Aubin, France). The volume rendering was made with Amira 6.2.0 (Thermo Fisher Scientific Inc., Waltham,
USA).
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2. MATERIALS AND METHODS

2.1 Animals and tissue preparation

The brain of a one-year-old female C57BL/6JRj mouse (Janvier Labs, Le Genest-Saint-Isle, France) was extracted
and transcardially perfused with 4% formaldehyde / phosphate buffered saline after sacrifice, then immersed in
4% formaldehyde / phosphate buffered saline. The mouse brain collected for this study was excess from an
experiment approved by the veterinary office of the Canton of Zurich (license number ZH067/17). For ethanol
dehydration, the brain was immersed for two hours in 20 mL of each of 50%, 70%, 80%, 90%, and 100% ethanol
(Carl Roth GmbH, Karlsruhe, Germany). The brain was measured in 100% ethanol to take advantage of enhanced
contrast from ethanol dehydration.21–23

2.2 Extended-field microtomography acquisition

Imaging was performed at the Anatomix beamline at Synchrotron Soleil (Saint-Aubin, France).13,14 A filtered
white beam with effective mean photon energy of around 27 keV was attained by setting the undulator gap to
5.5 mm and inserting 20 µm Au and 100 µm Cu filters into the beam path. The detector consisted of a 20 µm-thick
LuAG scintillator coupled to a scientific CMOS camera (Hamamatsu Orca Flash 4.0 V2, 2048 × 2048 pixels,
6.5 µm physical pixel size) via a Mitutoyo (Mitutoyo Europe GmbH, Neuss, Germany) microscope objective
(10×, NA 0.28) resulting in a magnification factor of 10 and an effective pixel size of 0.65 µm.24 The detector
was placed 50 mm downstream of the sample for single-distance phase retrieval. This distance was selected based
on zc = (2∆)2/λ with pixel size ∆ and wavelength λ to ensure that blurring from propagation-based phase
contrast does not exceed two pixels.25 The exposure time was set to 100 ms to fill half of the detector’s dynamic
range, which reduces severity of ring artefacts.

To cover the full width of the mouse brain, the detector’s FOV had to be linearly extended by a factor of 8,
which corresponds to a 64× larger reconstructed area. This was achieved with the acquisition of 4 rings, each
consisting of a 360° scan with offset COR, see Figure 2. The COR was offset by 0.6, 1.8, 3.0, and 4.2 mm for
rings 1, 2, 3, and 4, respectively. Note that in this convention, 0 mm corresponds to the COR at the center of
the detector FOV. Each ring scan consisted of 9000 projections. The acquisition of each ring took around 15
minutes, as a fly scan mode was used. Note that precise tilt alignment of the rotation stage is critical, as a
reconstructed slice is 0.65 µm thick and 10 mm wide.

A total of 8 height steps were needed to cover the mouse brain from cerebellum to olfactory bulbs. Height
steps were acquired with offset of 1.2 mm, corresponding to an overlap of about 200 pixels. The total scan time
was slightly over 8 hours.

2.3 Reconstruction of mosaic-style tomography data

The reconstruction pipeline had four main steps: (i) determination of the COR and ring overlap positions;
(ii) projection blending, ring artefact correction, and filtering for phase retrieval and/or noise reduction; (iii)
tomographic reconstruction; and (iv) blending of height steps. These steps are laid out in greater detail in the
following sections. The pipeline was built around a parameter file that contained information on the sample
name, filtering, ring correction, output grayscale, and cropping options. This parameter file was accompanied
by a table containing file paths to the raw data of the component ring scans. Each step of the pipeline could
be launched with only the parameter file as an input and was designed to run as batch jobs on either standard
workstations or scientific computing infrastructure, e.g. with sciCORE at the University of Basel. Note that this
reconstruction pipeline was not the one in use at Anatomix, which provided options for standard and off-axis
reconstructions.

2.3.1 Center-of-rotation and overlap positions

The COR was found by maximizing cross-correlation in overlapping regions of projection pairs from the inner
ring with rotation angles 180° apart. The mouse brain sample had relatively low contrast in projections, therefore
10 flat-field corrected projection pairs were used to increase robustness. Peaks in the cross-correlation curves
were automatically identified and their prominence determined with the Matlab function findpeaks. The COR
was selected from the prominence-weighted average positions of these peaks. Overlap positions between rings and
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Figure 2. Acquisition for large FOV microtomography. Conventionally, microtomography scans rely on acquisition of
one (top left) or two detector FOV’s (top right). FOV can extended perpendicular to the rotation axis by acquiring
projections in concentric rings (middle). Microtomography of a full mouse brain with 0.65 µm-wide voxels is illustrated
for projection or reconstruction tiling (bottom, left and right, respectively). The full coronal cross-sectional area of
the mouse brain can be imaged by stitching 4 offset center-of-rotation projection “rings” before reconstruction (bottom
left). Alternatively, local tomography scans with FOV given by a single detector FOV can be stitched together after
reconstruction – approximately 50 local scans (or about 16 off-axis scans) are needed for one height step of the mouse
brain (bottom right).

height steps were also found by maximizing cross-correlation in overlapping regions of projections from adjacent
acquisitions. Again, prominence-weighted average peak positions from 10 flat-field corrected projection pairs
were used to increase robustness. The recorded motor position of the translation stage were used as an initial
estimate to limit the search range for both COR and overlap positions between rings. The output of this step of
the pipeline was a list of overlap positions that can be used to build mosaic projections.

2.3.2 Projection blending, ring artefact correction, and filtering of radiographic projections

The next step generated large FOV mosaic projections. Single FOV projections were flat-field corrected and
then combined with linear blending, i.e. Iblend = αIr + (1 − α)Ir+1 with α ∈ [0, 1] linearly increasing through
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the overlap region, to create 8 × 8 extended mosaic projections around 180° of rotation. After blending, phase
retrieval was performed using Paganin’s filter.26

Ring artefacts were severe if no additional correction was applied. The correction used for the mouse brain
dataset was based on the mean of flat-field corrected projections over all rotation angles. This mean projection
contained spot-like features that were the result of inhomogeneities that remained in fixed positions on the
detector during acquisition. These inhomogeneities, which may have been caused by detector non-linearity,
were the source of ring artefacts because they could not be fully removed by flat-field correction. The mean
projection was high-pass filtered to isolate the ring artefact sources and subtracted from all projections prior to
reconstruction.

It is critical to select suitable parameters for both ring correction and filtering before reconstruction of
teravoxel-sized datasets. Previews were generated relatively quickly by processing projections covering the full
sample width but cropped in height to a stripe of e.g. 32 pixels. This allowed for selection of the desired
high-pass filter for the mean projection to be used for ring correction as well as the δ/β ratio in Paganin’s
phase retrieval.26 For this mouse brain, a ratio of δ/β = 200 was chosen based on visual inspection of the
sreconstructions, considering the trade-off between contrast and spatial resolution.27

The flat-field corrected, filtered, and blended projections were written to image files to be accessed for
reconstruction. The full mouse brain consisted of 4495 projections 14982× 14982 in size, resulting in a data size
of about 4495×900 MB = 4 TB at 32-bit precision prior to reconstruction. The projections were saved as TIFFs
with tiling such that 14982× 32 strips could be quickly read for block-wise reconstruction.

2.3.3 Tomographic reconstruction

Reconstruction was performed on blocks of 32 sinograms to avoid excessive memory consumption and allow for
parallelization. The open-source Python library tomopy (version 1.4.2)28 was selected for its implementation of
the gridrec reconstruction algorithm.29 The reconstruction section of the pipeline was thus written in Python
(version 3.7.4). It read a block of sinograms, took the negative logarithm, performed tomographic reconstruction
with tomopy’s gridrec, then cropped, re-scaled, and saved the reconstructed slices as a stack of TIFF images.

3. RESULTS AND DISCUSSION

3.1 Comparison of mosaic acquisition approaches

Mosaic tiling of both projections (hereafter referred to as projection tiling) and local tomography reconstructions
(hereafter reconstruction tiling) have been suggested for large-volume microtomography.8–11 The two approaches
are illustrated in Figure 2 (note that the underlying images are from a projection-tiling acquisition), where 4
ring acquisitions are needed for projection tiling and around 50 local tomography acquisitions are needed for
reconstruction tiling. The latter allows for standard reconstruction, e.g. with the PyHST2-based30 software
provided by the Anatomix beamline.13,14 The former requires a dedicated pipeline, as described above or by
Vescovi et al.8

Angular sampling requirements for local tomography indicated that fewer projections are needed for aliasing
artefact-free reconstructions31,32 compared with projection tiling. However, additional projections improved
photon statistics, see Figure 3. Therefore, to achieve a similar signal-to-noise ratio, the number of projections
for each local tomography scan must be the same as that used in each ring scan for projection tiling. With this
in mind, the reconstruction tiling approach was substantially less time- and dose-efficient.

Another disadvantage of local tomography reconstruction was that the truncated sinograms must be padded
to avoid cupping artefacts.18–20 Here, local tomography scans were simulated by cropping the ring acquisition
of the mouse brain around the center of rotation to produce a 2048 × 4495 truncated sinogram. Note that
these sinograms reflected rotation about 180°. Sinograms were then padded on both sides and reconstructed,
see Figure 4. To achieve artefact-free reconstructions, the truncated sinogram required padding of around 1000
pixels on both sides. More padding was likely not necessary because the sample was relatively homogenous and
low absorbing at the selected photon energy of about 27 keV.

Thus, in the present case, reconstruction tiling required reconstruction of 50 sinograms of size 4048 × 4495,
while projection tiling required reconstruction of a single sinogram of size 14982× 4495 (i.e. 3.7× 1 times larger
than a single padded local sinogram).
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Figure 3. Angular sampling for local tomography scans. Local tomography acquisition was simulated by cropping
projection-blended sinograms (14982× 4495) about the center-of-rotation to produce truncated sinograms (2048× 4495).
Reconstructions with all 4495 projections as well as 1/2, 1/3, and 1/4 of the projections were reconstructed (left to right).
While reconstructions with fewer projections did not have aliasing artefacts, the noise level increased. Magnified views
are given to illustrate image quality (bottom row). Thus, local tomography acquisitions should have the same projection
sampling as projection-tiling ring acquisitions to obtain equal signal-to-noise ratio. Note that truncated sinograms were
padded prior to reconstruction, see Figure 4. All images were converted from [1st, 99th] percentiles to gray values in the
range of [0, 255].

Figure 4. Padding to remove local tomography artefacts. Local tomography acquisition was simulated by cropping
projection-blended sinograms (14982× 4495) about the center-of-rotation to produce truncated sinograms (2048× 4495).
Increasing padding (left to right) removed the well-known cupping artefacts. Padding of 1000 pixels on both sides of the
2048-pixel-wide sinograms was sufficient to fully remove cupping. All images were converted from [1st, 99th] percentiles
to gray values in the range of [0, 255].
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3.2 Reconstruction speed for mosaic sinograms

While the first and second steps of the pipeline were written in Matlab (release R2020a, The MathWorks,
Inc., Natick, USA), reconstruction based on Matlab’s built-in filtered backprojection algorithm (iradon.m) was
limited for practical usage due to long reconstruction times. As a result, the open-source Python library tomopy

(version 1.4.2)28 was selected for its implementation of the gridrec reconstruction algorithm.29 A comparison of
reconstruction speeds for a single slice from a range of dataset sizes was made and the results are presented in
Table 1. For reconstruction of 8× extended field of view, represented in the table by 16384 × 16384, tomopy’s
gridrec was 60.5 times faster than Matlab’s filtered backprojection. For 2048 sinograms in one height step, this
corresponds in a reduction of reconstruction time from 1111 hours (47 days) to 18.4 hours, although it should
be noted that parallelization accelerates reconstruction times in both cases. Visual inspection showed no major
differences in reconstruction quality between the two algorithms, see Figure 5.

Reconstruction speeds for sinograms of increasing size

Software Algorithm Reconstruction time [s]

local off-axis 2 rings 3 rings 4 rings
2048 × 2048 4096 × 4096 8192 × 8192 12288 × 12288 16384 × 16384

Matlab iradon 3.7 30.0 238.6 833.8 1953.5
tomopy gridrec 0.4 1.7 7.4 23.5 32.3

Speed-up factor 9.3 17.6 32.2 35.5 60.5

Table 1. Comparison of reconstruction speed with Matlab’s iradon (release R2020a), which is an implementation of a
filtered backprojection, and tomopy’s gridrec (version 1.4.2). The speed-up factor represents the ratio of the former over
the latter. The selected sizes represent acquisitions with increasing number of rings, ignoring overlap. A single sinogram
was used with the number of projections equal to the grid width divided by 1.5, which is commonly used to avoid aliasing.31

Sinograms were generated by replicating or cropping the mouse brain dataset and were composed of 32 bit floating point
numbers. Tabulated values are the mean of five reconstructions of the same sinogram. Note that only the reconstruction
was timed and file read/write were not considered. Reconstructions were performed on a workstation with an Intel®

Xeon® 16 core CPU (E5-2637 v2, 3.50GHz) and 144 GB memory.

3.3 Misalignment of overlap positions

Misaligned tiling of projections generated artefacts similar to those of misaligned center-of-rotation, as illustrated
in Figure 6. Surprisingly, the mouse brain dataset was not very sensitive to misalignment in projection tiling,
i.e. several pixels of misalignment were needed before cell nuclei were obscured by the artefacts. This is likely
because 2 pixel spatial resolution was not achieved due to long propagation distance and application of Paganin’s
filter for phase retrieval.

3.4 Considerations for other samples

For the present imaging, the formalin-fixed ethanol-dehydrated mouse brain was placed in an ethanol-filled
Eppendorf container. This resulted in a relatively homogenous sample with cylindrical shape. For inhomogenous
samples, an alternative ring artefact correction method may be needed. In these cases, application of one or
more ring artefact correction algorithms provided by the tomopy package28 could be beneficial, for example those
in Refs. 33,34.

Overlap positions were found through cross-correlation. For non-cylindrical specimens, the sample is not in
the field-of-view for some projection angles, particularly for outer rings. For example, see Figure 2, where the
brain is not in the field of view for parts of the outermost ring. In this case, automatic selection of projections
with image content will allow for more robust calculation of overlap positions. Another potential challenge is low-
contrast samples, where low-pass filtering for noise reduction and contrast enhancement may improve automatic
selection of overlap positions. If an automatic approach is infeasible, a user can run a series of reconstructions
over a range of overlap positions and make a selection based on minimization of artefacts, see Figure 6. Since
misalignment in outer rings has minimal effect on inner rings, cf. Figure 6 top vs. bottom, overlap positions can
be selected sequentially from inside to outside.
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Figure 5. Comparison of reconstruction algorithms. The same 14982 × 4495 sinogram was reconstructed with tomopy’s
gridrec (version 1.4.2) (top) and Matlab’s filtered backprojection (iradon, release R2020a) (bottom). The full brain coronal
cross-section (left, binned 4 × 4) and unbinned magnified views within the caudate putamen (center, right) are shown.
All images are displayed with intensities from [1st, 99th] percentiles mapped to gray values in the range of [0, 255]. Visual
inspection reveals no discernible differences in image quality.

Figure 6. Artefacts due to misalignment of mosaic-tiled projections. The overlap between rings 1 and 2 (left) was set to
the found position plus -4, 0, and 4 pixels. Magnified views show the resulting reconstructions (right). Misalignment is
best seen for small structures with known shape, such as cells with circular nuclei (red arrow). Unsurprisingly, structures
of inner rings (top row) do not show artefacts when outer rings are misaligned (bottom row).
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3.4.1 The full mouse brain dataset

The full mouse brain, defined here from the top of the olfactory bulbs to the bottom of the cerebellum, was
scanned with 8 height steps. The resulting stitched datasets contained 14982 × 14982 × 14784 voxels, or 3.3
teravoxels. At 16-bit precision, the resulting datasets were 6.6 TB in size. It should be noted that this reflects
the entire reconstructed FOV of 911 mm3. Cropping to more closely cover the approximately 450 mm3 volume
of the mouse brain will reduce data size.

Sub-µm pixel sizes allow for visualizing individual neurons and their morphology across the entire mouse
brain. Microanatomical details within the hippocampus and thalamus are highlighted within a virtual coronal
slice in Figure 7. In-plane, the data provide details similar to conventional histology; however, µCT has isotropic
resolution. This allows for exploration of the dataset in any virtual slicing planes, see Figure 8. Some cupping is
observed, i.e. reduced intensity towards the center of the volume, which is may be the result of beam hardening
or the applied ring correction.

Figure 7. Microanatomical details within a virtual coronal slice. (top) Within the hippocampus, pyramidal neurons and
their dendritic trees in the Ammon’s horn are resolved. (bottom) Neurons and fiber tracts are shown in magnified views of
the thalamus. In-plane, the data provide details similar to conventional histology; however, µCT has isotropic resolution.

3.5 Registration and segmentation of mosaic tomography data

Registration is an important tool for analysis of neuroimaging data and generation of brain atlases. Three-
dimensional registration, particularly non-rigid registration, requires significant computational resources. For
example, in a recent study the full mouse brain could only be non-rigidly registered after downsampling to
9.3 µm-wide voxels.23,35 Even then, B-spline grid spacing below 12 were not possible on a workstation with 144
GB RAM.23,35 These challenges could potentially be addressed with a hierarchical approach with sub-volume
registration for the full resolution steps. In the next steps of this project, the data will be registered to the Allen
Mouse Brain Common Coordinate Framework.36

Segmentation of anatomical regions can be challenging in label-free virtual histology, thus manual approaches
are used in many cases. Terabyte-sized datasets require automated segmentation approaches. In certain cases,
selection of an embedding material can allow for simple semi-automatic segmentation. For example, ethanol-
based contrast enhancement allows fiber tracts to be segmented with region growing from a handful of manually
defined seed points in an ethanol-dehydrated mouse brain.22,23,37 Automatic detection of cells3,5 could also
allow for determination of anatomical regions based on cell distributions.38–40 Additionally, machine-learning
based approaches have shown success for terabyte-scale microtomography segmentation, for example to segment
33729 glomeruli in a mouse kidney.41
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Figure 8. Volume rendering of the mouse brain dataset. Volumetric imaging with isotropic resolution allows for exploration
of the brain along any virtual slicing direction, here an axial slice is shown. Note that the rendering represents 8× binned
data, which has a size around 10 GB and can be handled by a standard workstation. Multi-resolution approaches are
necessary for these teravoxel datasets. These volume rendering were made with VGStudio MAX 2.1 (Volume Graphics,
Heidelberg, Germany).

3.6 Visualization and sharing of TB-sized data

Currently, exploration and visualization of the 6.6 TB volume have been based on a hierarchical strategy, where
downsampled volumes are used to explore the full brain, then relevant regions are manually selected and loaded
from the high resolution volume for closer inspection. This method can be used on a standard workstation,
but is cumbersome and does not facilitate sharing. After registration to the Allen Mouse Common Coordinate
Framework,36 we plan to disseminate the data using Neuroglancer, which is an open-source browser-based in-
teractive visualization platform that allows for datasets up to PB in size.42 After data is converted to a format
compatible with their hierarchical viewer, it can be loaded into the viewer using a URL.

4. CONCLUSION

Extending the FOV of virtual histology is critical for brain mapping with true micrometer resolution. We
present proof-of-concept imaging of an entire mouse brain with 0.65 µm pixel size. This represents a 400×
increase in imaged volume compared with a single local tomography. Mosaic imaging methods were compared
and a projection tiling approach was selected because of its time- and dose-efficiency. A dedicated data processing
pipeline has been established for the reconstruction of these terabyte-sized datasets. These datasets will enable
quantification of brain microanatomy in health and disease. Going forward, the registration and segmentation
of these large datasets will be major challenges.
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[6] Töpperwien, M., van der Meer, F., Stadelmann, C., and Salditt, T., “Correlative x-ray phase-contrast
tomography and histology of human brain tissue affected by Alzheimer’s disease,” NeuroImage 210, 116523
(Apr. 2020).

[7] Ma, Y., Hof, P. R., Grant, S. C., Blackband, S. J., Bennett, R., Slatest, L., McGuigan, M. D., and Benveniste,
H., “A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance
microscopy,” Neuroscience 135, 1203–1215 (Jan. 2005).

[8] Vescovi, R., Du, M., de Andrade, V., Scullin, W., Gürsoy, D., and Jacobsen, C., “Tomosaic: Efficient
acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron X-ray beams,”
Journal of Synchrotron Radiation 25, 1478–1489 (Sept. 2018).

[9] Du, M., Vescovi, R., Fezzaa, K., Jacobsen, C., and Gürsoy, D., “X-ray tomography of extended objects: A
comparison of data acquisition approaches,” JOSA A 35, 1871–1879 (Nov. 2018).

[10] Miettinen, A., Oikonomidis, I. V., Bonnin, A., and Stampanoni, M., “NRStitcher: Non-rigid stitching of
terapixel-scale volumetric images,” Bioinformatics 35, 5290–5297 (Dec. 2019).

[11] Vo, N. T., Atwood, R. C., Drakopoulos, M., and Connolley, T., “Data processing methods and data acquisi-
tion for samples larger than the field of view in parallel-beam tomography,” Optics Express 29, 17849–17874
(June 2021).

[12] Foxley, S., Sampathkumar, V., De Andrade, V., Trinkle, S., Sorokina, A., Norwood, K., La Riviere, P., and
Kasthuri, N., “Multi-modal imaging of a single mouse brain over five orders of magnitude of resolution,”
NeuroImage 238, 118250 (Sept. 2021).

[13] Weitkamp, T., Scheel, M., Giorgetta, J. L., Joyet, V., Roux, V. L., Cauchon, G., Moreno, T., Polack,
F., Thompson, A., and Samama, J. P., “The tomography beamlineANATOMIXat Synchrotron SOLEIL,”
Journal of Physics: Conference Series 849, 012037 (June 2017).

[14] Weitkamp, T., Scheel, M., Perrin, J., Daniel, G., King, A., Roux, L., V, Giorgetta, J.-L., Carcy, A., Langlois,
F., Desjardins, K., Menneglier, C., Cerato, M., Engblom, C., Cauchon, G., Moreno, T., Rivard, C., Gohon,
Y., and Polack, F., “Microtomography on the ANATOMIX beamline at Synchrotron SOLEIL,” (July 2022).

[15] Kyrieleis, A., Ibison, M., Titarenko, V., and Withers, P. J., “Image stitching strategies for tomographic
imaging of large objects at high resolution at synchrotron sources,” Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607, 677–684
(Aug. 2009).

[16] Miettinen, A., Oikonomidis, I. V., Bonnin, A., and Stampanoni, M., “NRStitcher: Non-rigid stitching of
terapixel-scale volumetric images,” Bioinformatics 35, 5290–5297 (Dec. 2019).

[17] Vescovi, R. F. C., Cardoso, M. B., and Miqueles, E. X., “Radiography registration for mosaic tomography,”
Journal of Synchrotron Radiation 24, 686–694 (May 2017).

[18] Kyrieleis, A., Titarenko, V., Ibison, M., Connolley, T., and Withers, P. J., “Region-of-interest tomography
using filtered backprojection: Assessing the practical limits,” Journal of Microscopy 241(1), 69–82 (2011).

Proc. of SPIE Vol. 12242  122421L-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[19] da Silva, J. C., Guizar-Sicairos, M., Holler, M., Diaz, A., van Bokhoven, J. A., Bunk, O., and Menzel, A.,
“Quantitative region-of-interest tomography using variable field of view,” Optics Express 26, 16752–16768
(June 2018).

[20] Robisch, A.-L., Frohn, J., and Salditt, T., “Iterative micro-tomography of biopsy samples from truncated
projections with quantitative gray values,” Physics in Medicine & Biology 65, 235034 (Nov. 2020).
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