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Abstract

Purpose: Synchrotron radiation-based tomography yields microanatomical features in human
and animal tissues without physical slicing. Recent advances in instrumentation have made lab-
oratory-based phase tomography feasible. We compared the performance of three cutting-edge
laboratory systems benchmarked by synchrotron radiation-based tomography for three speci-
mens. As an additional criterion, the user-friendliness of the three microtomography systems
was considered.

Approach: The three tomography systems—SkyScan 2214 (Bruker-microCT, Kontich, Belgium),
Exciscope prototype (Stockholm, Sweden), and Xradia 620 Versa (Zeiss, Oberkochen, Germany)—
were given 36 h to measure three medically relevant specimens, namely, zebrafish larva, archaeo-
logical human tooth, and porcine nerve. The obtained datasets were registered to the benchmark
synchrotron radiation-based tomography from the same specimens and selected ones to the
SkyScan 1275 and phoenix nanotom m® laboratory systems to characterize development over the
last decade.

Results: Next-generation laboratory-based microtomography almost reached the quality
achieved by synchrotron-radiation facilities with respect to spatial and density resolution, as
indicated by the visualization of the medically relevant microanatomical features. The
SkyScan 2214 system and the Exciscope prototype demonstrated the complementarity of phase
information by imaging the eyes of the zebrafish larva. The 3-μm thin annual layers in the tooth
cementum were identified using Xradia 620 Versa.

*Address all correspondence to Bert Müller, bert.mueller@unibas.ch

Journal of Medical Imaging 031507-1 May∕Jun 2022 • Vol. 9(3)

https://orcid.org/0000-0003-0814-8467
https://orcid.org/0000-0001-6541-2629
https://orcid.org/0000-0002-3601-5509
https://orcid.org/0000-0002-5085-0180
https://orcid.org/0000-0002-0374-0472
https://orcid.org/0000-0002-0485-2708
https://orcid.org/0000-0003-1748-5676
https://orcid.org/0000-0003-4078-9109
mailto:bert.mueller@unibas.ch
mailto:bert.mueller@unibas.ch
mailto:bert.mueller@unibas.ch


Conclusions: SkyScan 2214 was the simplest system and was well-suited to visualizing the
wealth of anatomical features in the zebrafish larva. Data from the Exciscope prototype with
the high photon flux from the liquid metal source showed the spiral nature of the myelin sheaths
in the porcine nerve. Xradia 620 Versa, with detector optics as typically installed for synchrotron
tomography beamlines, enabled the three-dimensional visualization of the zebrafish larva with
comparable quality to the synchrotron data and the annual layers in the tooth cementum.
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1 Introduction

Hard x-ray microtomography is a three-dimensional (3D) imaging technique that allows for the
quantitative evaluation of microstructures in post mortem tissues.1 Advanced instrumentation is
applied for myriad scientific purposes, including the anatomical analysis of zebrafish larvae,2

the characterization of annual layers in cementum of human teeth,3 and the visualization of
paraffin-embedded nerves.4 Traditionally, the highest density and spatial resolutions have been
achievable at synchrotron radiation facilities. However, this unique instrumentation only offers
limited beam times based on successful applications or extra payments. Laboratory-based sys-
tems have been improved substantially by incorporating improved x-ray sources, phase-contrast
capabilities, and x-ray detector optics.5 With the increasing number of such systems on the
market, a detailed comparison is needed to understand the performance of these next-generation
scanners with respect to other available laboratory systems and dedicated microtomography
beamlines at synchrotron radiation facilities. To this end, the performances of three cutting-edge
laboratory-based tomography systems, employing absorption and phase-contrast modes, were
compared for the above-mentioned scientific applications. The common volumes extracted
from datasets were three-dimensionally registered to synchrotron radiation-based micro com-
puted tomography from the TOMCAT beamline at the Swiss Light Source (SLS) [Paul Scherrer
Institute (PSI), Villigen, Switzerland] or the ANATOMIX beamline at the Synchrotron SOLEIL
(Gif-Sur-Yvette, France) and then evaluated with respect to spatial resolution and contrast. In
addition, the user-friendliness of the three next-generation scanners was appraised by a single
novice.

1.1 Laboratory-Based Phase-Contrast X-Ray Tomography

Conventional x-ray tomography used in medicine relies on absorption contrast, which is very
suitable for imaging hard tissues. Soft tissue imaging usually requires appropriate staining. As an
alternative, one can take advantage of phase contrast modes to visualize tissues consisting of
light elements together with hard tissue components, including teeth, bone, and plaque, because
of the linear dependence of the phase shift on the electron density.6 For attenuation-contrast x-ray
tomography, it is especially demanding, since x-ray attenuation versus atomic number exhibits a
power law with an exponent between 3 and 4. As the x-ray beam passes through condensed
matter, it exhibits both absorption, and with sufficient beam coherence, a phase shift.7 For soft
tissues, the linear absorption coefficient is three orders of magnitude lower than the related coef-
ficient for the phase shift.8 Thus, for the majority of medically relevant hard x-ray images of
tissues in health and disease, phase-contrast methods are preferred.8 Several phase tomography
approaches have been evaluated for soft tissue imaging.6,8–12 Single-distance propagation-based
approaches are often the simplest to implement and generally offer the best spatial resolution.
Therefore, these systems are frequently used with micro- and nanotomography beamlines at
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synchrotron radiation facilities and are implemented in sophisticated laboratory-based microto-
mography systems.

High-resolution microtomography is more and more often referred to as “virtual histology,”
because it extends the anatomical information from conventional histological sections to the
third dimension.13,14 Virtual histology yields anatomical information without physical slicing.
The spatial resolution is roughly equal in the three orthogonal directions—a distinct feature
compared to serial sectioning and essential for the anatomical context, e.g., nervous tissue,
as well as simple and fast data acquirement for much larger samples.5,13 Using nanoholotomog-
raphy, one can even reach a spatial resolution beyond the optical limits given by the optical
means employed to image the histological slices.15 Such measurements, however, suffer from
limited access to synchrotron radiation facilities, since the purchase of beamtime is only
common for industrial research, and a research proposal can only be submitted a few times per
year, which leads to substantial delays and a focus on a smaller number of priority samples. As
an alternative, several research teams use virtual histology based on laboratory-based microto-
mography systems. The obtained results, however, are generally compromised with respect to
data from synchrotron radiation-based systems. The gap between laboratory- and synchrotron
radiation-based tomography data, clearly obvious a decade ago,16 is becoming narrower and
narrower (see e.g., see Refs. 17 and 18) with only minor differences in image quality.5,13,19

These advances in laboratory-based approaches motivated our team to evaluate cutting-edge
instrumentation with the goal to directly compare the tomographic imaging of selected, med-
ically relevant scientific questions related to the cellular anatomy of zebrafish larvae, to the
annual layers in human tooth cementum, and to the 3D representation of paraffin-embedded
porcine nerves. The acquisition of the necessary radiographs from the three selected specimens,
and their reconstruction, was restricted to a period of 36 h per advanced instrument, to guarantee
comparability and to have a reasonable timeframe for future experiments. It should be noted that
while longer experiments could yield substantially better deliverables, the 36-h period was
selected as tradeoff between standard user experience and the manufacturers’ requests. As a
benchmark, the three specimens were imaged, prior to measurements with the advanced instru-
mentation, at the tomography setups of the TOMCAT (SLS, PSI, Villigen, Switzerland) or
ANATOMIX (Synchrotron SOLEIL, Gif-sur-Yvette, France) beamlines. To validate progress
in imaging the three selected specimens, the laboratory-based systems SkyScan 1275 (Bruker
microCT, Kontich, Belgium) and nanotom m (Waygate Technologies, phoenix|x-ray, Wunstorf,
Germany) available at the core facility of the University of Basel were included in the compari-
son. The four to six datasets per specimen were three-dimensionally registered to segment the
common volume for a qualitative and quantitative comparison of image quality.

1.2 Zebrafish Larvae—A Versatile Biomedical Research Model

The zebrafish larva is a well-established animal for in vivo biomedical research. This rather basic
vertebrate model offers an outstanding balance between relevant physiology and accessibility
regarding ethical context, a rapid and effective life-cycle, and husbandry, as well as an attractive
similarity to the human genome.20 Therefore, the zebrafish larva finds numerous applications,
including studies in pathological conditions such as kidney injury21 and treatment such as trans-
plantation,22 to name a few. High-resolution hard x-ray tomography was used to examine the
single organ-centered anatomy of zebrafish heart23 and muscles,24 as well as nanoparticle
distribution.25 In a recent study, synchrotron radiation was applied in whole-organism histoto-
mography, thereby enabling the extraction of cellular architectures.26 This study promises a
broader understanding of anatomy and corresponding physiology and pathophysiology.
Previously, we showed that more than 50% of anatomical features identified by synchrotron
radiation-based microcomputed tomography (SRμCT) can also be identified with standard lab-
oratory-based tomography systems.27 We can, therefore, expect that the cutting-edge laboratory-
based systems will provide images comparable to the tomography setups at synchrotron
radiation facilities. Such a level of success implies the possibility to easily perform large
experimental series of high-resolution imaging fundamental in zebrafish larva-based research
activities.
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1.3 Tooth Root Cementum—A Lifelong Growing, Mineralized Tissue

Tooth cementum is a mineralized tissue that exists in vertebra teeth and covers the entire surface
of the tooth root, belonging functionally to its anchor, the periodontium. In contrast to bone,
this avascular complex is independent of regular remodeling, and thus it expands over a lifetime
with location-dependent growth rates.28,29 For humans, the homogeneous structure reveals
about 3-μm thin incremental layers, as originally found in optical micrographs of thin tooth
slices.30 These incremental layers were recently detected using synchrotron radiation-based
microtomography.3 Our team is currently evaluating data for entire teeth collected during a
beamtime session at the ANATOMIX beamline in February 2021. The related analysis pipeline
is presented in a recent paper.31 Incremental layers are seasonally deposited, similar to the well-
known layers in a tree trunk. Thus, a pair of layers, consisting of dark and bright structures,
represents one year.32 Resulting predictions of the season of death based on these layers33 indi-
cates tooth cementum as a tissue highly valuable for anthropology32 and forensics.34 Layer thick-
ness is influenced by a number of factors, including hormonal changes in pregnancy and stress
events, such as pathologies as well as nutrition, as examined profoundly in recent studies.33,35

Nonetheless, cervical acellular extrinsic fiber cementum provides the steadiest growth rate in
terms of conserving layer thickness.28,29,32 Unfortunately, counting these layers is error-prone
and observer-dependent, leading most commonly to an underestimation of age despite high-
resolution imaging methods.36,37 Further investigation is therefore desired and suggested in
archeological samples with corresponding life history.32,37 For these unique ancient samples,
tomographic imaging should be favored to conventional microscopy, the latter requiring physical
slicing.3 In this study, we show to what extent the incremental layers can be detected by means of
laboratory-based tomography setups. It can be reasonably assumed that owing to the develop-
ments in x-ray source and detector technology for the advanced instrumentation, incremental
layers could come to light.

1.4 Nerves—Clinical Application of Hard X-Ray Tomography-Controlled
Products

Nerves show slow self-healing and some reinnervation potential after damage up to a minimum
twelve months post-injury following a degenerative phase. Surgical treatment might be needed,
especially in neuronal endplate involvement, i.e., neurorrhaphy or even grafting in the case of
potential tension by end-to-end suturing.38 Still, more than one-quarter of patients do not regain
motor function39 without substantial improvement over the last two decades.38,39 Additionally,
the quantification of nerve damage, which currently relies on conventional histology, assists in
understanding the pathomechanisms, diagnostics, and therapy for multiple sclerosis40 and vas-
culitis, including Wegener’s polyangiitis.41 Microtomography with resolution down to the sub-
cellular level has been proposed as a tool for nerve imaging and further investigations into nerve
regeneration.4,42 In contrast to histology, phase-contrast microtomography of myelinated nerves
provides visualization and the quantification of the microanatomy of nerves and may lead to
profound physiological comprehension.43,44 We hypothesize that advanced laboratory instru-
mentation will lead to substantial improvements in microanatomical feature visibility compared
to established laboratory-based tomography systems.4,42,45

1.5 Assessment of User-Friendliness

A satisfying experience with a purchased product strongly depends on a subjective evaluation of
usability rather than purely objective criteria such as effectiveness and efficiency.46 Assessments
of software user-friendliness have thus been well-established since the 1980s through the use of
standard questionnaires, including the system usability scale.46 Crucial criteria appraised by the
analysis of comments on tested systems include easy handling and intuitive design.47 Unintuitive
systems run the risk of malfunction, leading to reduced overall performance of technology, and
may even be hazardous in a medical context.48 Therefore, we included the user-friendliness of
advanced laboratory systems as a valid purchasing criterion for next-generation systems. We
integrated four criteria to appraise novice user experience in cutting-edge setups: (i) intuitive
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interface, (ii) structural organization, (iii) efficiency and effectiveness, and (iv) reliability. These
areas were scored by a single beginner-level user who participated in the test measurements.

2 Materials and Methods

2.1 Sample Preparation

2.1.1 Preparation of three-day-old paraffin-embedded zebrafish larvae

Three-day-old zebrafish larvae were euthanized using tricaine methanesulfonate containing
0.612-mM trisamino-methane. Subsequently, the larvae were fixated in 4% paraformaldehyde
at room temperature before refrigerating the samples at a temperature of 4°C for storage. These
fixed larvae were dehydrated in a dilution series of ethanol from 25% via 50% and 70% to above
99.5% in time steps of 15 min. Then, the dehydrated zebrafish larvae were washed twice in
xylene, >98%, Carl Roth, Switzerland, and subsequently transferred into liquid paraffin at a
temperature of 68°C (Leica Microsystems, Wetzlar, Hesse, Germany). After cooling, metal
punches with inner diameters of 2.8 or 3.6 mm were used to cut out the embedded specimens
to obtain cylinders for the imaging tasks. For the synchrotron radiation-based experiments, the
paraffin cylinders were further manually trimmed to remove excess paraffin.

2.1.2 Selection of archaeological human tooth

The selected premolar tooth from the maxilla of a woman who died at the age of 36 comes
from the reference skeleton series Basel-Spitalfriedhof, which is archived at the Natural History
Museum Basel, Switzerland.

The skeletons were exhumed in 1988 and 1989 from the cemetery of the former Basel City
Hospital. Based on historical sources, it was possible to identify the skeletons of former hospital
patients, who died between 1845 and 1868. In addition, further information on social and geo-
graphical origin, information on living and working situations, medical histories, etc., are avail-
able. This detailed historical information, combined with corresponding skeletons from the 19th
century, is unique worldwide and allows, e.g., the reconstruction of biographies taking into
account biological and historical sources. Furthermore, these skeletons are used for method veri-
fication and the development of future methods.

2.1.3 Preparation of porcine nerves for tomographic imaging

After excision, the peripheral nerves were processed by following a standard histology protocol for
formalin fixation and paraffin embedding. Briefly, the nerves were straightened by firmly tugging
both ends with surgical forceps, fixed in histology-grade 4% formalin over a period of 24 h, and
then dehydrated in ascending ethanol solutions. Subsequently, nerves were transferred to xylene
and then perfused in a liquid paraffin-polymer mixture (Leica Paraplast, Muttenz, Switzerland).

When liquid paraffin perfusion was completed, the nerves were removed from the histologi-
cal tissue processor, placed in a metal container, and left for a period of 24 h inside an oven at a
temperature of 60°C. This step is important in removing air bubbles trapped inside or around the
specimen, as they can potentially cause artifacts during x-ray imaging and compromise auto-
matic data analysis. Subsequently, the specimens were thoroughly washed under flowing liquid
paraffin, to remove high-absorbing particles or debris on the sample surface that would affect
imaging quality. Finally, the nerves were immersed in paraffin several times while holding on
one edge, until a uniform cylindric specimen was formed and then cooled down to a temperature
of 4°C over a period of 15 min.

2.2 Data Acquisition with SkyScan 2214

The samples were mounted on a thin carbon fiber stage for high-resolution nanoCT scanning in
the SkyScan 2214 system. It is noteworthy that the SkyScan 2214 setup consists of up to three
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cameras that can be easily exchanged by the user. The selected x-ray camera was set in a near
position with a source-camera distance of ∼235 mm (for details, see Tables 1–3). Acceleration
voltage was set to 40 kV for imaging the zebrafish larva, 70 kV for imaging the tooth cementum,
and 30 kV for the porcine nerve bundle. A 0.5-mm thin aluminum filter was only applied for data
acquisition of the human tooth. An LaB6-type source filament was employed for all scans;
depending on the desired spatial resolution and flux, W or LaB6 cathodes can be implemented.
The individual scans were limited to a duration of <11 h. Spot size was about 0.5 μm for zebra-
fish larva and tooth radiograph recording, and about 1.5 μm for nerve bundle recording. Scan
pixel sizes were set to 330, 750, and 800 nm for zebrafish larva, tooth, and nerve bundle, respec-
tively. The total numbers of recorded projections were 3001, 2118, and 2401, for zebrafish larva,
tooth, and nerve fiber bundles, respectively. All scans were acquired over 360 deg, and frame
averaging was employed. For the zebrafish larva and tooth imaging, two images per projection
were averaged, while four images were used per nerve projection. Active ring artifact suppres-
sion by random horizontal (compensated) camera movement was done for all scans. Post-scan

Table 1 Scanning parameters used in zebrafish larva microtomography.

Nanotom
m

SkyScan
1275

SkyScan
2214 Exciscope

Xradia 620
Versa TOMCAT

Source-camera distance (mm) 600 286.0 237.5 280.0 12.6 25,012.0

Source-object distance (mm) 6.5 13.7 8.65 225.0 6.0 25,000.0

Effective voxel size (μm) 1.1 3.7 0.33 1.28 0.33 0.33

Acceleration voltage (kV) 60 15 40 40 50 (12 keV)

Beam current (μA) 310 156 116 1400 90

Horizontal FOV (pixels) 3072 1944 4032 2048 2048 2560

Number of radiographs 720 720 3001 3600 4801 2000

Rotation steps (deg) 0.5 0.5 0.12 0.1 0.07 0.09

Exposure time (s) 9 2.5 4.7 7 8 0.2

Scan time (h) 2.5 4 10.5 7.25 14 0.15

Table 2 Scanning parameters used in human tooth cementum microtomography.

SkyScan
2214 Exciscope

Xradia 620
Versa ANATOMIX

Source-camera distance (mm) 235.2 280.0 128.55 170,050.0

Source-object distance (mm) 10.1 225.0 13.55 170,000.0

Effective voxel size (μm) 0.75 1.28 0.71 0.65

Acceleration voltage (kV) 70 70 80 (33 keV mean)

Beam current (μA) 80 1400 125

Horizontal FOV (pixels) 4032 2048 2048 11,300

Number of radiographs 2118 3600 2501 9000

Rotation steps (deg) 0.17 0.1 0.14 0.04

Exposure time (s) 7 12 7 to 14 0.1

Scan time (h) 11 12.25 8.5 0.75
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correction was applied49 to minimize thermal movement artifacts. Image reconstruction was per-
formed by a Feldkamp-type cone-beam algorithm,50 using Bruker NRecon™ software with GPU
acceleration and by applying Gaussian smoothing, ring artifact, and beam hardening corrections.
Phase retrieval was also carried out for the acquired data.51

2.3 Data Acquisition with Exciscope

The three selected samples were imaged at KTH Royal Institute of Technology in Stockholm,
Sweden. The setup is based on the MetalJet D2 x-ray source (Excillum AB, Kista, Sweden), the
XSight Micron LC 1080 sCMOS X-ray detector (Rigaku Innovative Technologies Europe s.r.o.,
Czech Republic) and the URS100BCC rotation stage (Newport, California, United States). Both
acquisition control and image reconstruction were done using Exciscope software (Exciscope
AB, Kista, Sweden). The experimental setup had a source-object distance of 225 mm and a
source-detector distance of 280 mm. Effective pixel size was set to 1.28 μm at the scintillator
and 1.03 μm at the object, due to geometric magnification. Projections were acquired equian-
gularly over a full 360 deg rotation. The reconstruction included phase retrieval with Paganin’s
method52 and tomographic reconstruction using the FDK method.50 The scan parameters for the
three samples are listed in Tables 1–3.

2.4 Data Acquisition with Xradia 620 Versa

X-ray microscopy measurements were performed on a Zeiss Xradia 620 Versa system (Carl Zeiss
X-ray Microscopy, Inc., Dublin, California, United States). Projections of the samples were
recorded in a unique two-stage magnification process that included optical magnification.
For the zebrafish larva data recording, we employed an acceleration voltage of 50 kV, a beam
current of 90 μA, a 20× objective, 325-nm effective pixel size, an 8 s exposure time, and 4801
projections. For the human tooth we used an acceleration voltage of 80 kV, a beam current of
125 μA, a 4× objective, narrowing of the x-ray bandwidth by the LE4 filter, 710-nm effective
pixel size, a rotation angle-dependent exposure time ranging from 7 to 14 s, and 2501 projections.
The porcine nerve was imaged with an acceleration voltage of 60 kV, a beam current of 108 μA,
a 4× objective, 709-nm effective pixel size, an exposure time of 6.2 s, and 3201 projections. The
tomography datasets were reconstructed with ZEISS Scout-and-Scan Reconstructor software,
using the cone-beam method for the tooth and zebrafish larva data and the OptiRecon method
for the nerve data. In addition, the zebrafish larva data were reconstructed with the DeepRecon
Pro reconstruction module and post-processed with the PhaseEvolve software module.

Table 3 Scanning parameters used in porcine nerve microtomography.

SkyScan
1275

SkyScan
2214 Exciscope

Xradia 620
Versa ANATOMIX

Source-camera distance (mm) 286.0 235.2 280.0 44.35 170,050.0

Source-object distance (mm) 30.2 10.8 225.0 9.35 170,000.0

Effective voxel size (μm) 8.5 0.8 1.28 0.71 0.65

Acceleration voltage (kV) 20 30 40 60 (33-keV mean)

Beam current (μA) 175 150 1400 108

Horizontal FOV (pixels) 1944 4032 2048 2048 15,000

Number of radiographs 720 2401 3600 3201 9000

Rotation steps (deg) 0.25 0.15 0.1 0.11 0.04

Exposure time (s) 0.65 1.1 10 6.2 0.05

Scan time (h) 2.3 6.0 10.25 7.5 0.5
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2.5 Data Acquisition at the TOMCAT Beamline

Synchrotron radiation-based phase-contrast x-ray microtomography measurements of zebrafish
larva were acquired at the TOMCAT beamline X02DA of the SLS.53 The x-ray beam generated
by the 2.9 T superbend magnet was monochromatized to 12 keV at a bandwidth of around 2%,
using an Ru/C double multilayer monochromator. Projection images of the sample placed about
25 m from the source were converted to visible light by a 20-μm thick Lu3Al5O12∶Ce scintillator
(Crytur, Turnov, Czech Republic) positioned 12-mm downstream of the sample. The image on
the scintillator was magnified 20-fold by a visible-light microscope (Olympus UPLAPO 20×
objective) and recorded by a pco. Edge 5.5 sCMOS camera (PCO, Germany) with a native pixel
size of 6.5 μm, resulting in an effective pixel size of 0.325 μm. During the continuous 180 deg
rotation of the sample (parallel beam geometry), 2000 projections with 200-ms exposure time
were recorded for the reconstruction, resulting in an angular step of 0.09 deg and a scan time of
400 s. Additionally, 30 dark-field and 50 white-field images were recorded for image correction.
Propagation-based phase-contrast projections were calculated from the flat field- and dark field-
corrected radiographs, using Paganin’s algorithm with the parameters δ ¼ 10−7 and β ¼ 2 10−9.52

The absorption- and phase-contrast reconstructions were then computed from the corrected and
phase-filtered projections, respectively, with the gridrec reconstruction algorithm.54

2.6 Data Acquisition at the ANATOMIX Beamline

Measurements at the Synchrotron SOLEIL, ANATOMIX beamline55 were taken with a filtered
white beam at a gap of 5.5 mm from the U18 in-vacuum undulator source of the beamline. The
beam was filtered with 20-μm thick Au and 100-μm thick Cu films. The resulting beam had
an estimated mean photon energy of about 33 keV. The detector consisted of a 20-μm thick
Lu3Al5O12∶Ce scintillator (Crytur, Turnov, Czech Republic) coupled to a scientific-grade
CMOS detector (Hamamatsu Orca Flash 4.0 V2) of 2048 × 2048 pixels by microscope optics
(Mitutoyo 10× M PLAN APO, numerical aperture 0.28) and with a magnification of 10, result-
ing in an effective pixel size of 0.65 μm. As the size of the nerve and the tooth were larger than
the field of view, we performed an extended-field acquisition, where we acquired scans at four
and three off-center positions, respectively. The neighboring radiographs were stitched together
based on maximizing cross-correlation in the overlapping regions. At an electron current of
450 mA in the SOLEIL storage ring, exposure time for each of the 9000 projections per height
step/ring taken over a range of 360 deg was 50 and 100 ms, respectively. The scan was taken in
continuous on-the-fly mode. With the time required for the acquisition of flat and dark images,
and including dead time, the overall scan time for each height step was around 30 and 45 min,
respectively. Before the absorption-contrast reconstruction, the projections were filtered with a
Gaussian of width σ ¼ 1.25 pixel and 0.75 pixel, respectively, to increase the contrast-to-noise
ratio (CNR).56

2.7 Data Acquisition with Nanotom m® and SkyScan 1275

Parameters for data acquisition of the three selected specimens, i.e., paraffin-embedded zebrafish
larva and porcine nerve, using the established microtomography systems nanotom m® and
SkyScan 1275 are given in Tables 1 and 3.

2.8 Data Registration

The registration pipeline consisted of several steps. First, we found an approximate position in
the SRμCT datasets corresponding to the volume imaged in the laboratory scanner. The labo-
ratory-based volume was then manually pre-aligned with this SRμCT image region via ITK-
SNAP57 (version 3.8.0). The images were then automatically registered with an affine or sim-
ilarity transformation employing the open-source registration toolbox elastix (version 4.9).58,59

In the case of the zebrafish larva and tooth specimens, the foreground region was determined
by semi-automatic segmentation via thresholding and morphological operations. Image regis-
tration parameters were tuned by checking the progression of the image similarity measure
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during registration and by visually inspecting alignment. The original laboratory-based μCT
volumes were transformed to the space of the SRμCT volumes region using cubic B-spline
interpolation, as this preserved image intensities far better than nearest-neighbor and linear
interpolation.60 Registrations of the zebrafish larva, tooth cementum, and porcine nerve bundle
images were performed independently by three of the authors (G.R., M.O., and C.T.). The regis-
tration parameters are listed in Table 4.

2.9 Identification of Anatomical Structures

Representative slices of the tomography datasets were compared in anatomy to atlas data. For the
paraffin-embedded zebrafish larva, the images were compared to histological slices published in
the Zebrafish Lifespan Atlas.61 Qualitative comparison was done for the zebrafish larva dataset,
because the same region is imaged in every dataset.

For the paraffin-embedded porcine nerve, the porcine sciatic nerve model was used.62

3 Results and Discussion

Image quality was initially evaluated by visual assessment, i.e., a microanatomical description,
with subsequent calculation of the spatial resolution. The representative cross-sectional virtual
histology slices acquired with synchrotron radiation sources showed a wealth of anatomical fea-
tures, therefore, serving as the gold standard. In Sec. 3.1, we present a comparison of the zebra-
fish larva and the porcine nerve alongside the results of the currently available inhouse systems
nanotom m® and SkyScan 1275. Sections 3.2, 3.4, and 3.6 contain the results of the next-
generation laboratory systems for the three selected specimens in comparison to the synchrotron
radiation-based microtomography data for the same specimens.

3.1 Descriptive Microanatomy of Selected Tomographic Slices

Cross-sectional slices of the paraffin-embedded zebrafish larva head are shown in Fig. 1, top row.
The data acquired at the TOMCAT beamline, image on the right, are phase-retrieved and
demonstrate true single-cellular and even subcellular resolution. In particular, one can see mes-
encephalic and ophthalmic nuclei. Individual ocular cell layers that can be distinguished are
the ganglion cells, inner plexiform, amacrine cells, the photoreceptor layer, and the retinal pig-
mented epithelium—apart from the distinction between the bipolar and outer plexiform layers.
Mesencephalic nuclei with high electron density are separated from their surroundings; however,
corresponding cartilage features around the pharynx remain low in contrast.

The established laboratory-based systems SkyScan 1275 and nanotom m® (top row, left and
center images of Fig. 1) do not yield sufficiently high spatial resolution or contrast, respectively. It
is noteworthy that the nanotom m® data barely provide meaningful images of this low-absorbing
specimen, since the aluminum layer on the detection unit suppresses photons with energies below
30 keV. Therefore, only the otoliths and the overall shape are visible as shown in a recent study.25

Table 4 Main registration parameters for the three classes of samples.

Zebrafish larva Tooth cementum Pig nerve bundle

Transformation Affine Affine Similarity

Image similarity measure Normalized correlation
coefficient

Normalized correlation
coefficient

Advanced Mattes
mutual information

Multi-resolution image
pyramid with three levels

16×, 8×, 4× 4×, 2×, 1× 4×, 2×, 1×

Number of iterations 4000 2000 or 3000 3000

Number of sample points 8192 130,000 or 1,950,000 65,536
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The SkyScan 1275 system allows the detection of photons with an energy down to 10 keV, where
even the ocular layers can be distinguished. The contrast between the denser nuclear mesence-
phalic region and its surroundings is satisfactory. Limited spatial resolution, however, prevents
true cellular resolution.

The data from ANATOMIX beamline have revealed the characteristic anatomy of the periph-
eral nerve, which consists of epi-, peri- and endoneurium, as well as primary nerve fiber bundles
surrounded by myelin sheaths. The latter is highlighted in the magnified view (Fig. 1, lower
right, with location given by the yellow dashed box). The vasa nervorum was invisible due

Fig. 1 First row: corresponding virtual slices through the zebrafish larva head by means of the
established laboratory-based microtomography systems SkyScan 1275 and nanotom m® in
comparison with data from the TOMCAT beamline (left to right), which can obviously serve as
the gold standard in zebrafish larva imaging. Second row: corresponding cross-sectional slices
of unprocessed, paraffin-embedded porcine nerves. Using 5-μm wide pixels, SkyScan 1275 (left)
provides poorer spatial resolution in comparison to the ANATOMIX beamline (right) with 0.65-μm
wide pixels and propagation-based phase contrast, obtaining anatomical features down to the
sub-cellular level. The magnified views in the third row, the locations of which are indicated by the
yellow-colored dashed lines, show a selected nerve fiber bundle. The image clearly demonstrates
the gap between established laboratory-based systems and tomography setups at synchrotron
radiation facilities.
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to a lack of contrast. The absorption-contrast SkyScan 1275 datasets (cp. second row of Fig. 1
left) allowed for visualization of the blood vessels; however, myelin sheaths could not be
resolved due to insufficient spatial resolution or contrast.

3.2 Comparing Zebrafish Larva Imaging of Next-Generation
Laboratory-Based Scanners with Tomographic Imaging
Available at TOMCAT Beamline

3.2.1 Performance of SkyScan 2214

The comparison of the images in the top row of Fig. 1 with the ones in Fig. 2 elucidates the leap
in evolution from established microtomography to cutting-edge systems. Even the most afford-
able among the three systems, namely, SkyScan 2214, allows for the resolution of the individual
cells within the zebrafish larva head, as especially recognized in the images with higher mag-
nification provided in the right column (see left part of the top row). The similarity to the gold
standard data (right part of the top row) is striking. The eye region with ophthalmic cells were
used for estimating spatial resolution, using the Fourier domain.63 Briefly, the logarithm of the
squared norm of the Fourier transform was plotted as a function of the squared distance from the
origin, then a linear fit allowed for the estimation of the width of a Gaussian point spread func-
tion. The instrument at the TOMCAT beamline yielded 1.3 μm, whereas SkyScan 2214 data
produced 1.6 μm.

Fig. 2 The tomographic imaging of the zebrafish larva shows comparable results between the
synchrotron radiation-based and next-generation laboratory-based instrumentation. First column:
corresponding virtual slices through the zebrafish larva head by means of the cutting-edge, labo-
ratory-based microtomography SkyScan 2214 system (top row) in comparison with data acquired
at Exciscope (second row) and absorption-contrast tomography images from Xradia 620 Versa
(third row). The dashed yellow squares indicate the position of the enlarged views (second col-
umn). Third column: corresponding virtual slices through the head of the zebrafish larva recorded
at the TOMCAT beamline; the first row shows data reconstructed without phase retrieval, and the
second row shows it after Paganin phase retrieval. The dashed yellow squares indicate the posi-
tion of the enlarged views (fourth column). The image in the third column and third row is obtained
from the Xradia 620 Versa instrument using software including the Zeiss PhaseEvolve algorithm.
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3.2.2 Performance of Exciscope

The related virtual slices through the zebrafish larva shown in the left part of the second row
in Fig. 2 were prepared by including phase retrieval with Paganin’s method. Therefore, the
TOMCAT beamline data given in the right part of the second row of Fig. 2 exhibit modified
contrast with respect to the images in the top row of Fig. 2. In addition, the spatial resolution
has been compromised. Cellular resolution was mostly preserved, although several anatomical
features of the eye vanished, owing to noise level. This behavior is even more pronounced in the
data for Exciscope, most probably because of the less appropriate detector optics. The individual
cells can hardly be recognized; hence, the Exciscope system—at least in the configuration used
herein—cannot resolve the cells within a paraffin-embedded zebrafish larva. The eye region with
the ophthalmic cells (magnified view) was also used for estimating spatial resolution within the
phase-retrieved datasets.63 Here, the phase retrieved data from the TOMCAT beamline yielded
1.8 μm and the Exciscope 4.3 μm.

3.2.3 Performance of Xradia 620 Versa

The selected virtual slice through the zebrafish larva obtained with the Xradia 620 Versa system
was recorded in the absorption contrast mode (see left part of third row in Fig. 2). Xradia 620
Versa resembles data from the TOMCAT beamline, see top row right part, best, most probably
because of the same optical components in both detection systems. Some edge enhancement is
visible in these two datasets, e.g., the feature in the lower-right corner. The eye region with the
ophthalmic cells used to estimate spatial resolution63 gave rise to a spatial resolution of 1.6 μm,
slightly above the value mentioned for the tomography setup at TOMCAT beamline (1.3 μm).

The Xradia 620 Versa setup could only provide reconstructions based on absorption contrast
(status March 2021). The manufacturer, however, has stated that a feature for image enhancement
using phase contrast will be available soon. In August 2021, the reconstruction module DeepRecon
Pro was presented.64 In this reconstruction, the image contrast with respect to propagation-based
phase-contrast effects was enhanced using the PhaseEvolve module with parameters: fringe width
5.24 and fringe strength 12 (right image in bottom row of Fig. 2). Depending on the chosen param-
eters, the result is comparable to the single-distance phase-retrieved data set, shown above in the
second row of Fig. 2.

3.3 Zebrafish Larva—Full-Specimen Imaging in Pre-Medical Studies

Concerning the detection of anatomical features Xradia 620 Versa showed the highest resolution,
i.e., down to single nuclei; the contrast in the provided images was further improved with the
software PhaseEvolve. SkyScan 2214 produced a likewise high-quality dataset with a slight
increase in noise. Distinction of cells was impossible with Exciscope, but it nonetheless showed
satisfactory layer separation within the zebrafish larva eye. It is noteworthy that this was
achieved in unstained samples, whereas, previously, staining has been widely used with labo-
ratory instrumentation.23 A detailed comparison of the three x-ray microscopes was impossible,
as at the time of our measurement, i.e., March 2021, the DeepRecon Pro and PhaseEvolve soft-
ware modules were not available yet in Europe for the Xradia 620 Versa, SkyScan 2214 data
measurements had to be repeated, and the Exciscope prototype only provided detector optics
with an effective pixel size of 1.3 μm. Following visual inspection, however, advances in table-
top μCT systems, in comparison to the established systems in our lab, were evident, leading to an
image quality close to that of SRμCT, although at longer scan times.

Recent studies of zebrafish larvae, e.g., their complete histological phenotyping26 and the deter-
mination of nanoparticle distribution,25 have relied on SRμCT. Based on the present results with
cutting-edge μCT systems, future studies of the zebrafish larva in a laboratory setting are planned.
Moreover, with the attractive homology to humans, as underlined by exemplary drug target con-
servation,65 further investigations of pharmacological and phenomics studies with high-resolution
imaging of organs and whole zebrafish larva will be led by cellular resolution in an accessible setup
for fast-feedback and follow-up imaging. This volumetric imaging provides a 3D context—in con-
trast to conventional histology serving as an alternative for pharmacological studies. Future
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zebrafish larva studies will include imaging the progression of kidney diseases and the renal regen-
eration with the goal to identify therapeutics that enhance human renal regeneration.21

3.4 Comparing the Imaging of Annual Layers in Human Tooth Cementum
by Applying Next-Generation Laboratory-Based Scanners and
ANATOMIX Beamline Microtomography

Applying mosaic-style acquisition,66 the entire human tooth cementum was made visible by
means of single-distance phase-contrast tomography. This approach avoided the presence of
artifacts known from local scans with true micrometer resolution when objects with centimeter
diameters were studied. Thus, local tomography data from the three selected next-generation,
laboratory-based tomography systems could be registered to the large dataset from the
ANATOMIX beamline. This approach was helpful, since local tomography at pre-defined posi-
tions could not be guaranteed. Therefore, the data shown in Figs. 3 and 4 do not cover the same
regions of the human tooth, but they have been always registered to the same ANATOMIX
dataset. Consequently, the comparability of tomography data from the cutting-edge instrumen-
tation is definitely provided.

3.4.1 Performance of SkyScan 2214

The part of the human tooth shown in the first row of Fig. 3 is a superb choice, because many
annual layers can be traced from left to right within data from the ANATOMIX beamline

Fig. 3 Selected regions of interest from the human tooth cementum acquired at the ANATOMIX
beamline (images in the left column) and registered data from SkyScan 2214 (right image, top
row), from Exciscope (right column, middle image), and from Xradia 620 Versa (right column, bot-
tom image). The registered data are represented in a special 3D fashion: 100 slices were rendered
using the sum along ray tool from VGStudio MAX to improve the visibility of the incremental layers
(see yellow arrows).31 Annual layers are visible not only in data acquired at the synchrotron radi-
ation facility, but also in the dataset gathered at the cutting-edge laboratory-based Xradia 620
Versa system. The width of each image equals about 600 μm.
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(see left image). As found previously,3 the 3-μm thin annual layers are much clearer in the low-
absorbing parts of the tooth cementum. The SkyScan 2214 setup, however, only shows contrast
between the lower and higher x-ray-absorbing regions in the tooth cementum, while the annual
layers remain invisible. This observation is also supported by Fig. 4 (first row), when scrolling
through the 160 selected virtual slices obtained from the datasets of the two tomography
systems.

3.4.2 Performance of Exciscope

The images in Fig. 3, middle row shows a part of the human tooth with the following anatomical
features. In the upper part, one finds dentin with a crack of characteristic morphology. In the
middle, tooth cementum with the annual layers is found. The lower part in black represents
the surrounding air. Whereas the annual layers are easily recognized within the data from the
ANATOMIX beamline, indicated by the yellow-colored arrow, Exciscope instrumentation in
the configuration used could not resolve these anatomical features with an average thickness
of only 3 μm. An objective with higher resolution, however, might master this deficiency.
These findings are further elucidated by Fig. 4. It is noteworthy that in Fig. 4, middle part explic-
itly shows that the thin lines, usually termed incremental lines, are actual 3D layers, given by the
continuity of the visible lines scrolling through the 160 slices of the synchrotron radiation-based
dataset.

Fig. 4 A still image of Video 1 showing the annual layers are detectable in the movies in the
left column and at the one on the bottom in the right column: Scroll-through 160 cross-sectional
virtual histology slices, prepared by the software VGStudio MAX, of the human tooth obtained
at the ANATOMIX beamline (images in the left column) and corresponding local scans by means
of SkyScan 2214 without phase retrieval (right column, top row), of Exciscope with a priori phase
retrieval (right column, middle row), and of Xradia 620 Versa without phase retrieval (right column,
bottom row). The width of each box equals about 600 μm (Video 1, MP4, 11503 KB [URL:
https://doi.org/10.1117/1.JMI.9.3.031507.1]).
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3.4.3 Performance of Xradia 620 Versa

The bottom rows in Figs. 3 and 4 demonstrate that annual layers can also be made visible with a
laboratory-based system. Although Xradia 620 Versa does not reach the resolution of the syn-
chrotron radiation-based setup, this result is nevertheless promising and could even be further
improved by substantially increasing acquisition time. It is noteworthy that the manufacturers
had only 36 h to image the three selected samples, and the flux from the laboratory sources is
orders of magnitude less than that of the synchrotron radiation facilities.

3.5 Human Tooth Cementum—Requirement for Non-Destructive Imaging
Techniques in Unique Samples

To date, incremental layers may only be imaged to a satisfying extent at synchrotron radiation
facilities37 or by means of conventional optical microscopy of thin sections. 32,34,36 A laboratory-
based μCT was suggested by Mani-Caplazi et al.3 based on physically sliced samples and a close
source-sample position. In the current study, we showed that advanced laboratory instrumenta-
tion generates great potential for facilitating high-resolution incremental layer imaging in a non-
destructive manner. Barely identifiable lines in tooth cementum obtained with Xradia 620 Versa
were enhanced by an oriented projection of 100 slices.31 High-resolution, 3D imaging of human
tooth cementum, as evidenced in the SRμCT or μCT, provides a sufficient anatomical context
to show that the thin lines actually correspond to curved 3D layers,67 which we showed in scroll-
through Fig. 4, where those lines were continuous.

Our findings demonstrate great potential for laboratory sources in ongoing research into tooth
cementum annulation (TCA). This phenomenon has been studied in humans for around four
decades32; however, there is—as of yet—neither a coherent explanation nor a standard protocol
for tooth selection, preparation, and layer counting, and yet many advances have been made.32,34

Laboratory-based μCT may benefit region selection applied a priori to SRμCT3 or conventional
microscopy, where samples are cut irreversibly into about 100-μm thin slices.36 Furthermore, the
promising results offered by Xradia 620 Versa indicate that laboratory-based μCT alone could be
used to quantify these layers, e.g., in large-scale studies of archeological samples with recorded
history, to standardize age estimation or examine the factors influencing layer growth. This
approach might be extended to animal studies.

3.6 Comparing the Three-Dimensional Imaging of the Spiral Organization
in a Paraffin-Embedded Porcine Nerve by Applying the
Next-Generation Laboratory-Based Scanners and ANATOMIX
Beamline Microtomography

Similar to tooth imaging, a paraffin-embedded nerve with a diameter of 6 mm does not fit into
the field-of-view of the microtomography setups at the spatial resolution selected. Therefore,
mosaic-style acquisition66 was also applied for porcine nerve imaging at the ANATOMIX
beamline. Again, local tomograms from the cutting-edge laboratory-based instruments were
registered to data acquired at the ANATOMIX beamline. Figure 5 shows parts of the regis-
tered data comparing the gold standard from the ANATOMIX beamline with the selected
cutting-edge laboratory-based systems SkyScan 2214, Exciscope, and Xradia 620 Versa,
respectively. In the movies, one clearly recognizes a spiral structure to the nerve fiber bundles,
which can be approximated by right-handed or left-handed helices with a pitch of about
830 μm. To provide an idea to the readers without access to the movies, Fig. 6 shows a
sequence of 20 virtual slices indicating this spiral structure. This representation of the data
from the ANATOMIX beamline, however, is much less convincing than scrolling through the
series of adjacent slices in Fig. 5.

3.6.1 Performance of SkyScan 2214

It is not really surprising that data from the laboratory-based system show much more noise that
the ones from the synchrotron radiation facility, as easily explained by the photon statistics.
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The myelin sheaths are slightly more visible in tomography data from the SkyScan 2214
instrument than for the Xradia 620 Versa, as demonstrated by Fig. 5, cp. right column movies
at top and bottom.

3.6.2 Performance of Exciscope

Since Exciscope is equipped with a liquid metal source, the photon flux is much higher than for
the other two laboratory-based tomography devices. Thus, the density resolution is superior, as
seen by the well-preserved myelin sheaths in Fig. 5, second row, right part. This phenomenon is
even enhanced by implemented phase retrieval, and consequently, the spiral structure is far more
visible. It should be noted that there are right- and left-handed spirals.

Fig. 5 A still image of Video 2 showing the scroll-through 160 cross-sectional virtual histology
slices, prepared by the software VGStudio MAX, of the porcine nerve obtained at the ANATOMIX
beamline (left column) and registered local tomography data of SkyScan 2214, Exciscope, and
Xradia 620 Versa (right column from top to bottom). The spiral structure of the primary nerve fiber
bundles is recognized via rotation during scrolling. The width of each box equals about 780 μm
(Video 2, MP4, 11639 KB [URL: https://doi.org/10.1117/1.JMI.9.3.031507.2]).).
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3.6.3 Performance of Xradia 620 Versa

Figure 5 (bottom row) clearly demonstrates the substantial improvement of Xradia 620 Versa
imaging with respect to the SkyScan 1275 system (cp. Fig. 1). Nevertheless, the myelin sheaths
were barely resolved. Regardless, one can detect the spiral structure of the nerve fiber bundles.

3.7 Nerve—Clinical Application

High-density resolution and sub-micrometer spatial resolution are required to quantify changes
in axonal bundles and myelin sheaths as the result of nerve injury and regeneration. We showed
that the cutting-edge tomography systems SkyScan 2214, Exciscope, and Xradia 620 Versa yield
enough spatial and density resolution to enable the visibility of several myelin sheaths and axo-
nal bundles. Therefore, x-ray virtual histology, combined with bioengineering, could facilitate
protocols for stepwise de- and re-cellularization, including follow-up laboratory imaging for fast
feedback control. Already, laboratory-based μCT, with or without the combination of conven-
tional histology, can assist in studies of nerve regeneration, including grafting.45,68 Furthermore,
μCT could support the urgent diagnostic need of Wegener’s polyangiitis,69 the gold standard
of which is histological examination of tissue biopsy.41 Moreover, μCT allows for the further
investigation of pathomechanisms of this vasculitis and other neurovascular diseases via the
computational extraction of neurovascular networks,70 or supporting the 3D prospective map-
ping of neuron connectivity, to understand the anatomical context.71 Based on the image quality
demonstrated herein, we expect the further integration of advanced μCT into the study of nerve
disease, injury, and regeneration.

In Fig. 5, the spiral shape of nerve bundles is observed as one scrolls through the recon-
structed slices. This behavior has been described previously as a chevron pattern in longitudinal
histotomographical nerve slices.43,44 Whilst the function of this pattern warrants further inves-
tigation, one explanation could be a gain in stability, analogous to (steel) wire ropes.72

Fig. 6 The sequence of 20 virtual slices from the dataset recorded at the ANATOMIX beamline
signifies the spiral structure of the selected nerve fiber bundle (counterclockwise).
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3.8 Limitations of the Study

The comparative study of next-generation tomography systems for virtual histology has several
drawbacks, as already pointed out by manufacturers during data acquisition. The 36-h limit was
chosen to create comparable and fair conditions between the laboratory systems as well as to
address the real-life lab operation at an imaging platform. Longer scanning times would probably
yield improved results considering the reference images from the synchrotron radiation facilities
were acquired with a much higher photon flux. The present study did not consider the unequal
numbers of photons used for the individual tomograms.

Measurements with the SkyScan 2214 system in March 2021 did not achieve expected data
quality; therefore, the measurements were repeated in July 2021, which might have resulted in
some bias in terms of direct comparison.

At the time of the measurements (March 2021), the Exciscope system was still in a prototype
stage. Therefore, the optics only allowed for data acquisition with an effective pixel size of
1.3 μm. Simply exchanging a standard optical element would allow for pixel sizes of 0.65 μm.
Since the experiments, Exciscope has designed and built a system with improved specifications.
This system has an entirely rebuilt mechanical platform complete with vibration dampening,
temperature control, redesigned radiation shielding, electrical control, and safety systems.
Furthermore, the system has now a motion system with seven motorized axes, which allows
for improved control and automation through the software interface. The vertical object stage
is ready to make 280-mm helical CTs with a few microns’ resolution. In addition, the rotation
stage has a typical error motion of only 0.5 to 0.6 μm, which together with a high-resolution
detector will allow for an isotropic spatial resolution of 1 μm.

The lack of the PhaseEvolve software for the Xradia 620 Versa system at the stage of data
analysis, and the limited pixel size of the Exciscope system, made a direct comparison of the
CNR impossible. Together with spatial resolution, CNR is an essential metric in assessing the
image quality of acquired tomograms.56

Spatial resolution depends not only on the pixel size employed, but also on many other
parameters such as the mechanical stability of the entire system and the design of the detection
unit. The spatial resolution, we have calculated here, should be treated with care, because the
analysis of the power spectrum of reconstructions used63,73 is challenging and less straight-
forward than, for example, the measurement of test patterns. Nonetheless, the quantities derived
with the model provided by Mizutani et al.63 are consistent with visual inspection.

3.9 User-Friendliness

The main author, a master’s student in medicine, together with the second author, an experienced
physicist and an expert in the field, observed the 36-h measurements at the three manufacturers
of the cutting-edge, laboratory-based microtomography systems. During the setup of the experi-
ments, the software for the x-ray microscopes was explained in detail. The user-friendliness of
the software was compared on the basis of (i) intuitive interface, (ii) structural organization,
(iii) efficiency and effectiveness, and (iv) reliability.

Overall, the operation by a novice was best supported by the Xradia 620 Versa software. This
interface allowed for a rather simple and intuitive measurement setup. Proceeding through the
well-structured software required user input, which was assisted by a compact two-page manual.
A live camera showed the sample position within the instrument. Time saving and precise sample
centering were based on double-clicking on radiographs at 0 deg and 90 deg rotation angles.
A single click allowed for repositioning the sample along the x axis, y axis, and z axis as well as
the source and detector along a single axis. Fragile samples were protected from collisions by
automatically measuring the sample diameter. Filter and source settings could be comfortably
modified via software. A table in the short two-page overview assisted in choosing the best
suitable filter, and rapid pre-scanning enabled scouting. Subsequent fine-tune sample centering
was performed automatically after manual center identification in the pre-scan data. In addition,
“recipes” could be created to facilitate a session for scanning multiple samples. The estimated
scanning time was met.
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Bruker’s software for SkyScan 2214 was also user-friendly. The interface, however, was less
self-explanatory. It consisted of one screen combining visualization of the sample using a cam-
era, an immense live-view x-ray window, and the necessary settings. This approach was advanta-
geous for experienced users, but a novice might miss essential adjustments, due to the absence
of guidance throughout the preparation steps. Additional settings were hidden in the “options”
panel. The sample could be rotated by 360 deg and relocated in the x, y, and z directions, auto-
matically. Translation in the x and y dimensions was simplified by drag-and-drop. Additionally,
the detector could be mechanically moved in one dimension. Automatic sample protection was
unavailable, but the source and filter could be chosen comfortably via software. The selection of
these settings, however, was not guided and linked to the user’s prior experience with measure-
ments. Similar to Xradia 620 Versa, rapid pre-scanning allowed for scouting, whilst fine-tune
centering was performed manually. Finally, estimated scanning time was generally reliable,
although it once underestimated the required scan time.

The user-friendliness of Exciscope could not be assessed, since the prototype was missing a
user interface in March 2021, when the measurements took place. The prototype required numer-
ous modifications that precluded operation by a novice user. The reliability of the estimated scan
time was satisfactory.

In summary, the software of the Xradia 620 Versa convinced the novice user in terms of ease of
use. Bruker’s software for SkyScan 2214 offered an almost similarly satisfactory interface, albeit
with less simplicity, and user-friendliness could not be assessed for the Exciscope prototype.

The assessment of the usability of the tomography systems was restricted to one novice user,
which is a limitation of the present study in consequence of the constraints during the COVID-19
pandemic.

3.10 Laboratory-Based Phase Tomography

The present study belongs to the very few comparative experimental approaches to microtomog-
raphy13,14,16 and should support the purchase of next-generation, laboratory-based systems, espe-
cially for the field of medicine. The time is now ripe to combine absorption and phase
tomography in a single laboratory-based device and reach an isotropic spatial resolution close
to 1 μm, maybe even to 100 nm and below. The gap between the tomography setups at the
synchrotron radiation facilities and the established laboratory-based microtomography systems
is becoming more and more narrow.

The volumetric evaluation of tissues of human and animal origin is currently mainly done
by serial sectioning, staining, and microscopic imaging of individual slices. This approach has
its drawbacks, though, such as restricted spatial resolution perpendicular to the slices, and the
numerous preparation artifacts. High-resolution hard x-ray tomography can complement histol-
ogy. Prior to sectioning, the stained and unstained tissues can be made visible in absorption and
phase contrast modes, to extract local densities. Histotomography similarly facilitates decision-
making in terms of the cutting location and the angle of a probe for further histological
examination.74 Similarly, laboratory-based phase tomography can support choosing a region
of interest prior to valuable beamtimes at synchrotron facilities.

The zebrafish larva is an appropriate example through which to demonstrate complementary
information from the absorption and phase contrast modes (see Fig. 2). The combination of 3D
data, using a bivariant histogram, can allow for dedicated segmentation tasks.75

3.11 Outlook for Virtual Histology

This work demonstrates that the latest laboratory-based systems employing phase and absorption
contrast provide scans with the adequate contrast and resolution to differentiate single cells.
Previous work has shown that microtomography has excellent correlation with the conventional
histology of embedded tissue slices,14,24,26,74 and so x-ray microtomography can be referred to
as virtual histology. This imaging technique is also compatible with prior MRI-techniques, e.g.,
diffusion MRI,76 or subsequent electron microscopy.77 Furthermore, volumetric virtual histology
provides a third dimension for histopathological investigation that has typically relied on irre-
versible, sparse, two-dimensional sectioning. Microtomography does not require stained samples

Migga et al.: Comparative hard x-ray tomography for virtual histology of zebrafish larva. . .

Journal of Medical Imaging 031507-19 May∕Jun 2022 • Vol. 9(3)



and avoids slicing them, which results in irreversible destruction of the sample. The conventional
approach has further drawbacks, including preparation artifacts such as tears, folds, and non-
uniform strains, as well as a requirement for staining.

Laboratory-based systems have the potential to enable the faster availability of virtual
histology, as it is currently carried out in synchrotron radiation facilities with limited user
access—and most often at a great distance from hospitals. Therefore, further potential benefits
of the laboratory-based technique should be explored. While it finds broad application in many
research areas, as shown in this study, microtomography could complement future clinical work.

The gold standard for histopathological investigation is conventional histology, based on
two-dimensional sectioning, staining, and imaging with optical microscopy. This approach runs
the risk of missing important areas or of being time-intensive for the pathologist searching for the
region of interest in large samples. Therefore, certain tissues could be examined beforehand,
using a laboratory-based system to locate relevant areas and define the best sectioning angle,74

and to help removing unreasonable samples early.77 This will support that subsequent histology
shows the relevant areas under the microscope.

The extent to which virtual histology could support pathology as a diagnostic tool in the
future needs to be investigated. Open questions could revolve around the effectiveness of pre-
scans using microtomography. Scouting might reduce the overall diagnostic time in larger tissue
samples. Nevertheless, a rapid scan followed by slicing needs sufficient spatial resolution and
contrast in a reasonable measurement time to indicate a slicing position. The question here arises
as to what an appropriate time might be. If one plans first to perform a high-resolution scan of the
tissue, subsequent histology might not be necessary because of virtual histology’s recently estab-
lished and validated value for histopathological analysis. However, staining and histology may
remain the gold standard in certain cases, e.g., a recent study has shown that Tau proteins in
human brains of Alzheimer’s disease patients remain undetected in virtual histology.13 Still, for
many cases, virtual histology could serve as the sole diagnostic tool with scan-times of approx-
imately 10 h per probe. Future studies should determine and validate label-free virtual histology
as a reliable diagnostic tool.

4 Conclusions

Due to the advances in instrumentation over the last decade, propagation-based phase-contrast
microtomography is no longer reserved for synchrotron radiation facilities. Laboratory x-ray
microscopes can provide satisfying (sub-) cellular resolutions to visualize anatomical features
with true micrometer resolution. The compared scanners will be further complemented, but they
can already provide high-quality datasets of medically relevant hard and soft tissue specimens.
These laboratory-based systems not only support beamtime planning by a priori non-destructive
isotropic overview scans, but they can also be used in stand-alone imaging. Such imaging can be
applied for pre-clinical trials to quantify pathological mechanisms through the versatile zebrafish
larva model, the analysis of TCA in mammals, as well as pre-clinical and clinical trials on the
regeneration and grafting of nerves.
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