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Summary

Localizing a histological section in the three-dimensional
dataset of a different imaging modality is a challenging 2D-
3D registration problem. In the literature, several approaches
have been proposed to solve this problem; however, they can-
not be considered as fully automatic. Recently, we developed
an automatic algorithm that could successfully find the posi-
tion of a histological section in a micro computed tomography
(μCT) volume. For the majority of the datasets, the result of
localization corresponded to the manual results. However, for
some datasets, the matching μCT slice was off the ground-
truth position. Furthermore, elastic distortions, due to histo-
logical preparation, could not be accounted for in this frame-
work.
In the current study, we introduce two optimization frame-
works based on normalized mutual information, which en-
abled us to accurately register histology slides to volume data.
The rigid approach allocated 81 % of histological sections with
a median position error of 8.4 μm in jaw bone datasets, and
the deformable approach improved registration by 33μm with
respect to the median distance error for four histological slides
in the cerebellum dataset.

Introduction

Histology slides generally form the basis of a quantitative anal-
ysis of tissue morphology. Because the two-dimensional slide
represents only a part of the three-dimensional object, the
conclusions may depend on the slide selection, see, e.g. (Bern-
hardt et al., 2004). Micro computed tomography (μCT) yields
the full three-dimensional information in a nondestructive
fashion and is, therefore, complementary to the histological
analysis. If the morphological information is at least partially
available in both data, one can extrapolate the information
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from histology to the third dimension (Hieber et al., 2016;
Khimchenko et al., 2016). Furthermore, it is well known that
the preparation of histology slides gives rise to artefacts, in-
cluding cracks and location-dependent shrinkage (Germann
et al., 2008; Schulz et al., 2011). Using even less detailed CT
data, one can correct the slides to obtain more reliable results.
For the artefact correction, the selection of an optimized cut-
ting direction and the extrapolation into the third dimension,
a sound identification of the two-dimensional counterpart of
the histological slide in the three-dimensional tomography
dataset is necessary. Image registration is the basis for numer-
ous image analysis techniques. In particular, the registration
of images from different modalities enables practitioners to ob-
tain a large amount of complementary information for accu-
rate diagnosis (Zhan et al., 2007; Alic et al., 2011; Seise et al.,
2011; Goubran et al., 2015), the combination of functional
and morphological data (Schormann & Zilles, 1998; Müller
et al., 2012; Particelli et al., 2012; Schulz et al., 2012; Stalder
et al., 2014) or atlas construction (Ourselin et al., 2001; Tsai
et al., 2008; Krauth et al., 2010; Tsai et al., 2011), to name but
a few. The task is particularly challenging when aligning mul-
timodal data of different dimensions, such as 2D to 3D. There
exist many techniques for 2D projections to 3D volume regis-
tration (Markelj et al., 2012). None of them can be applied to
our problem, i.e. matching a histological slide to a tomographic
volume dataset acquired from the same specimen, because of
two main reasons. First, the basic goal of these algorithms is
to find a mapping between the projections and the 3D volume.
Second, the methods often require manual feature identifica-
tion. In contrast, our 2D-3D registration problem is concerned
with registering a 2D slide such as histological section to a 3D
dataset, i.e. slide-to-volume registration. In the literature, it is
commonly referred to as slice-to-volume registration (Ferrante
& Paragios, 2017) and only a few approaches investigate the
problem of registering 2D histology images to 3D datasets as
well as 2D-2D multimodal registration of histological images
(Jacobs et al., 1999; du Bois d’Aische et al., 2005; Li et al.,
2006; Pitiot et al., 2006).
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The most common approaches for registering histological
sections to the 3D space initially reconstruct a 3D volume from
histology serial sections and then apply 3D-3D registration
(Ourselin et al., 2001; Ceritoglu et al., 2010; Alic et al., 2011;
Nir & Salcudean, 2013). Reconstructing a 3D volume from 2D
histological sections, however, requires information about the
sectioning location in 3D space, which is not always available.
One way of determining this information is to use a comple-
mentary modality such as blockface photographs (Kim et al.,
1997; Schormann & Zilles, 1998; Meyer et al., 2006; Dauguet
et al., 2007; Park et al., 2008; Liu et al., 2012; Goubran et al.,
2013; Hallack et al., 2015) or photographs of an unstained
brain (Bardinet et al., 2002). Hallack et al. (2015) performed a
three-stage procedure for the registration of a histology stack
to an ex-vivo MRI dataset using feature points: (1) Matching
image stack to MRI dataset, (2) rigid registration of each histo-
logical slide to MRI slice (3) and nonrigid registration. Some of
the methods rely on implanting artificial markers (Humm et al.,
2003; Lazebnik et al., 2003; Breen et al., 2005) or color-coding
(Alic et al., 2011). Many reconstruction strategies utilize seg-
mentation (Taylor et al., 2004; Zhan et al., 2007; Ou et al.,
2009) for volume reconstruction or for more robust similar-
ity calculations (Ourselin et al., 2001; Mosaliganti et al., 2006;
Seise et al., 2011; Nir & Salcudean, 2013). There are also 3D re-
construction techniques based on mutual similarities between
2D histological images and known or fixed spacing between
slides (Ourselin et al., 2001; Arganda-Carreras et al., 2010;
Nir & Salcudean, 2013). The main limitation of these 3D-3D
registration techniques is that they require a high number of
histological sections that are not always available.

Our approach differs from the one of Hallack et al. (2015)
in the respect that one single slide can be registered directly to
the 3D dataset and that the matching surface can be curved
to adapt to large deformations. In our work, we focus on a
more challenging type of histology registration, namely single
slide-to-volume registration (Sarve et al., 2008). One of the
most recent approaches by Hoerth et al. (2015) registered
semiautomatically 2D images within 3D μCT data, using the
generalized Hough transform. Lundin et al. (2017) presented
an accurate approach based on binary data that requires a
presegmentation step and is tailored to trabecular bone. In Wa-
chowiak et al. (2004), the authors applied a global optimiza-
tion for rigid 2D CT and simulated ultrasound slices (USs) to 3D
histology registration. With normalized mutual information
(NMI) as a cost function, the optimal parameters for particle
swarm optimization were determined. Ferrante & Paragios
(2013) based the registration on a grid of control points that
represents both in- and out-of-plane deformation. By pairwise
over-parametrization of the graphical model, they overcome
inefficiency of the proposed model. The real-time registration
of US slices to MRI explored by Pardasani et al. (2016) was
able to improve the initial pose using patch-based similarity.
Several methods also account for nonlinear deformations
perpendicular to the slicing plane, which can often occur

in soft tissue specimens (Schormann et al., 1995; Kim et al.,
2000; Dauguet et al., 2007; Goubran et al., 2015). Among
nonrigid registration techniques applied to histology, one
can find methods based on splines (Dauguet et al., 2007;
Osechinskiy & Kruggel, 2010) or on a radial basis (Goubran
et al., 2015) which require a selection of control points and
a full multigrid approach (Schormann & Zilles, 1998). One
of the attempts to incorporate nonrigid deformation was
made by Osechinskiy & Kruggel (2010), who introduced a
general framework for slice deformation in 3D space and im-
plemented different techniques to identify the best-performing
set of parameters. Slide-to-volume registration was also
investigated by Kim et al. (2000), who used nonlinear
polynomial functions to relate the coordinates of 2D histology
to 3D MRI. Although these methods achieve reasonable
results in registration, they need manual interventions
at the stage of either segmentation or near ground truth
initialization, where the ground truth corresponds to the
best fit.

Manual detection of the histological slide in a 3D volume is
a very time-consuming task and can last up to 1 day for one
slide. Recently, we have developed an automatic algorithm for
2D histology to 3D μCT localization (Chicherova et al., 2014)
and showed its application on jaw bone data. Although the
algorithm performed very well for most of the specimens, in
some cases localization improvement was needed. In this pa-
per, we extend the framework by registering more accurately
each histological slide into the volume. We propose a combined
rigid and deformable registration approach for hard and soft
tissue samples. The main elements of the proposed method are
NMI (Viola & Wells III, 1997; Studholme et al., 1999; Pluim
et al., 2003) and Legendre polynomials, which are used as
basis functions to approximate surface deformation. In addi-
tion to being fully automatic, the proposed method is signif-
icantly more accurate than the first approach introduced by
Chicherova et al. (2014).

Materials and methods

We used two datasets to evaluate the performance of the
two-step optimization frameworks. The first dataset origi-
nated from a dental study about jaw bone augmentation
materials (Stalder et al., 2014). The bone specimens were
extracted from patients directly before inserting the dental
implants. The procedure was approved by the responsible
Ethical Committee, study protocol number 290/13, to
perform a combined histology and tomography study. Five
male and four female patients, aged between 46 and 75
years, obtained treatments of bone defects at the molars in
the upper and lower jaw (n = 8 and n = 1, respectively).
The bone graft materials used were BoneCeramic

R©
(Institute

Straumann AG, Basel, Switzerland) in one case, easy-graftTM

(SUNSTAR Degradable Solutions AG, Schlieren, Switzerland)
in four cases and Bio-Oss

R©
(Geistlich Biomaterials, Wolhusen,
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Table 1. List of tomograms including specimen specifications.

# Patient
age (Gender)

[years]
Biopsy location ISO

3950 Grafting material
Dataset voxel
length [μm] Dataset size [voxel] No. of slides

1 A 70(m) 11 easy-graftTM 4.3 861×861×1939 6
2 B 74(f) 11 easy-graftTM 8.6 301×301×969 9
3 C 46(m) 23 Bio-Oss

R©
8.6 301×301×1093 7

4 D 47(m) 16 BoneCeramic
R©

8.6 421×421×753 6
5 E 57(m) 34 easy-graftTM 8.6 301×301×507 6
6 F 75(m) 16 Bio-Oss

R©
8.6 320×320×718 4

7 G 63(f) 15 BoneCeramic
R©

8.6 440×440×738 5
8 H 46(f) 21 easy-graftTM 8.6 300×300×799 6
9 I 47(f) 26 Bio-Oss

R©
8.6 381×381×416 4

10 E 57(m) 34 easy-graftTM 4.3 621×621×1269 5

Datasets #9 and #10 were not considered in the standard error analysis because they required an adjustment of the setup (see Section 3.1) for a successful
registration.

Switzerland) in three cases (Table 1). After 5 months, the
biopsy was harvested with a trephine bur 3 mm in diameter
exactly at the position for implant placement. These biopsies
were composed of soft tissues, existing and newly formed
bone, as well as augmentation and embedding materials
(Stalder et al., 2014). The pathology samples were cylindrical
biopsies with a diameter of around 2 mm and a length of
approximately 4 mm. In order to analyze the integration
of the graft in the jaw, a μCT of the whole specimen was
acquired. The jaw biopsies were scanned using synchrotron
radiation-based micro computed tomography (SRμCT). The
measurements were performed at the beamline W2 (HASY-
LAB/DESY, Hamburg, Germany, operated by HZG Research
Center, Geesthacht, Germany) in conventional absorption
contrast mode. The photon energy corresponded to 25 keV.
The detector featured 3056 × 3056 pixels (effective pixel
length 2.2 μm), which were binned by a factor of two before
reconstruction to increase the density resolution (Thurner
et al., 2004). The tomogram was obtained from a set of
721 equiangular radiographs along 180◦ using the standard
filtered back-projection reconstruction algorithm (Stalder
et al., 2014). The cerebellum specimen was scanned using
the CT-system nanotom

R©
m (phoenix | X-ray, GE Sensing

& Inspection Technologies GmbH, Wunstorf, Germany) in
absorption contrast mode with an accelerating voltage of
60 kV and a voxel length of 3.5 μm. The dataset was resized
to a voxel length of 7 μm using MATLAB

R©
R2016a (The

MathWorks, 135 Inc., Natick, MA, U.S.A.). Subsequently,
five to nine histological cross-sections through the hori-
zontal plane of the specimen were taken. After the SRμCT
data acquisition, the biopsies were placed in customized
polytetrafluoroethylene molds and embedded with a methyl
methacrylate solution consisting of methacrylate-methyl
ester (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland);
dibutyl phthalate (Merck-Schuchardt OHG, Hohenbrunn,
Germany) and Perkadox (Dr. Grogg Chemie AG, Stetten,

Switzerland) with a ratio of 89.5:10.0:0.5. After embedding,
the specimens were stored and dried at room temperature.
A diamond saw (Leica 1 SP 1600, Leica Instruments GmbH,
Nussloch, Germany) served for cutting circularly shaped
sections of the cylindrically shaped biopsies. The sections were
glued (Cementit CA 12, Merz+Benteli AG, Niederwangen,
Switzerland) on opal acrylic slides (Perspex GS Acrylglas
Opal 1013, Wachendorf AG, Basel, Switzerland), wrapped
in aluminium foil and pressed overnight under a metal block
of 1 kg weight. Further, thinning down to a thickness of
300 μm was achieved through grinding (EXACT CS400,
EXACT Apparatebau, Norderstedt, Germany) and treatment
with sandpaper (grit size 1200, Struers GmbH, Birmensdorf,
Switzerland). Subsequently, the surfaces were polished on
a Struers Planopol-V (Struers GmbH) with sandpaper (grit
size 4000, Struers GmbH). The polished sections were etched
with formic acid (0.7%, Sigma Aldrich) for 2 min, cleared
and etched for another 2 min, rinsed with water and later
surface-stained with toluidine blue (1% stock solution in 0.1 M
phosphate buffer pH 8.0, Sigma Aldrich) for a duration of 10
min. The sections were digitally recorded with a microscope
(Leica M420, Camera DFC 320, Leica Microsystems, Heer-
brugg, Switzerland, magnification 1.0 × 18.6 – 22.3) using
the software Image Manager 1000 (Leica Microsystems)
(Stalder et al., 2014). The histology images were scanned with
a lateral pixel length of 1.6 μm. Before applying the registra-
tion pipeline, the images were down-sampled to approximate
the voxel length of the CT data. The thickness of histological
sections was limited to 300 μm in the present study, because
the biopsies were not de-calcified and contain the brittle
grafting material. The slide, however, was only stained in the
surface-near region in a thickness of approximately 10 μm.
Each histological slide resulted in an RGB image ranging from
300 × 300 to 861 × 861 pixels. TheμCT data are 3D matri-
ces of eight-bit gray-scale values. The data comprise a volume
between 301 × 301 × 507 and 301 × 301 × 1093 voxels

C© 2018 The Authors
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with a binned isotropic voxel length of 8.6 μm. Two datasets
were recorded with a voxel length of 4.3 μm and comprise of
861 × 861 × 1939 and 621 × 621 × 1269 voxels, respec-
tively. Ten datasets of nine patients were included in this study
(Table 1).

The second dataset corresponds to a cylindrical specimen,
obtained post-mortem from the cerebellum of a 73-year-old
male. The specimen was 6 mm in diameter and 4.5 mm in
length. It was extracted from the donated human brain and
fixed in 4% histological-grade buffered formalin. The sample
was dehydrated and paraffin-embedded according to standard
pathology procedures. The cylindrical sample for the tomogra-
phy measurement was extracted from the paraffin block using
a metal punch with an inner diameter of 6 mm. The cerebel-
lum specimen was scanned using the CT-system nanotom

R©

m (phoenix|X-ray, GE Sensing & Inspection Technologies
GmbH) in absorption contrast mode with an accelerating volt-
age of 60 kV and a voxel length of 3.5μm. These data were then
filtered with a median filter followed by an adaptive Gaussian
filter in VGStudio MAX 2.0 (Volume Graphics GmbH, Heidel-
berg, Germany), were resized to a voxel length of 7 μm using
MATLAB

R©
R2016a (The MathWorks, 135 Inc.), cropped and

saved in 8 bit grayscale 3D matrix 860 × 860 × 901 pixels. In
total, four histological slides were sectioned (thickness 4 μm)
resulting in RGB images 860 × 860 pixels in size with a res-
olution of about 7 μm. To obtain the histological slides, the
paraffin cylinder was re-embedded in a standard paraffin block
by partial melting and the addition of fresh paraffin. Sections
were cut using a microtome from the upper part of the sample,
left to float on a water bath and then collected one by one
and mounted on glass slides by hand. The slides were then
dried out and stained with haematoxylin and eosin (H &E ),
following a standard protocol. Images of the resulting slides
were taken at 2× optical magnification on a combined light
microscope/digital camera system (Olympus DP73+Olympus
BX43, Olympus Schweiz AG, Volketswil, Switzerland). All of
the histological images were converted to grayscale, cropped
and flipped, if needed.

Our approach for deformable 2D-3D registration consists
of three main steps (Fig. 1). First, we find a matching slice
to the histological image in the 3D μCT dataset, using our
previously presented approach (Chicherova et al., 2014), that
matches histological slides to CT data using feature detection
and matching followed by an optimal plane search based on a
density-biased random sample consensus (RANSAC). Second,
we rigidly register the histological image to the found slice.
And lastly, starting from the initial match, we deform the
plane by using an optimization framework based on NMI (see
also, Table 2).

The ground truth for the counterpart of histological slide in
the CT data corresponds to the registration result manually
identified by four experts. The pipeline was implemented in
MATLAB

R©
R2016a (The MathWorks, 135 Inc.) for a Linux

system running Ubuntu 15.10.

Initialization

Initialization is the first step in our method that roughly lo-
calizes the histological slide in the 3D space of the μCT data.
Histological sectioning can be represented as a plane within
the 3D volume of the μCT dataset, defined by the plane equa-
tion Ax + By + C z + D = 0. To find the plane coefficients,
we start by computing matching points between the histology
image and each image of the μCT data. Corresponding points
between histology images and μCT images are found with
the scale and rotation invariant feature detector Speeded Up
Robust Features (SURF) (Bay et al., 2008). In comparison to
Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) and
Affine SIFT (ASIFT) (Yu & Morel, 2011), it provides either more
matching points or more robust correspondences (Chicherova
et al., 2016). The matched keypoints for each μCT image are
subsequently stored in a 3D matrix. We assume that the den-
sity of the points is higher in the area which corresponds best to
the histological slide. Therefore, next, we solve a density prob-
lem in 3D space, using a modified RANdom SAmple Consen-
sus (RANSAC) algorithm (Fischler & Bolles, 1981; Chicherova
et al., 2014). After 15 000 iterations of the modified RANSAC,
estimates of the normal vector parameters for the plane that
includes the most inliers are chosen. The search parameters
are constrained so that only planes within a certain tilting an-
gleαjaw, αcereb are considered. For the complete pipeline and
details of this method, we refer the reader to our previous work
(Chicherova et al., 2014). Herein, we just mention that in com-
parison to the previous method, we introduce an additional
parameter, namely a filter radius. The specimen’s background
and borders often produce wrong correspondences, and so to
remove them we crop the points by taking only those lying in-
side a circular region in the specimen (Chicherova, 2015). We
calculate the filter radius as M/2.8, where M is the size of the
square μCT image. Another modification is associated with
the number of selected points for RANSAC fit Pleft, which is
calculated depending on the total number Ptotal of matching
points:

Pleft =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ptotal if Ptotal < 1500
1500 if 1500 < Ptotal < 5000
Ptotal/3 if 5000 < Ptotal < 10000
Ptotal/4 if 10000 < Ptotal < 40000
10000 if 40000 < Ptotal

. (1)

These parameter values were selected empirically. The pa-
rameters for SURF1 are left to default as well as for the sec-
ond nearest neighbour criterion (distance ratio = 0.8). The
angle between the normal to the plane and z-axis is set to
αjaw = π/8 andαcereb = π/36 for the jawbone and the cere-
bellum datasets according to their pixel size. The proposed val-
ues of specific parameters are successfully applied to other X-
ray based modalities as well (Chicherova, 2015; Chicherova

1 http://www.mathworks.ch/matlabcentral/fileexchange/28300-

opensurfâincluding-image-warp-
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Fig. 1. Deformable 2D-3D registration pipeline. (A) Matching histology with every slice in the μCT. (B) Plane fitting to 3D keypoints cloud. (C) Affine
2D registration of histology to the matching tomogram. (D) Deformable optimization of the found plane. The voxel positions are provided in x-, y-, and
z-direction.

et al., 2016; Hieber et al., 2016; Khimchenko et al., 2016).
Default parameters were applied for the built-in routines of
RANSAC and the feature detection algorithms. The parame-
ters, to be adjusted, are the maximal angle, the radius of the
specimen, the number of iterations of RANSAC (10 000 by de-
fault) and the number of cloud points (10 000 by default). In

the computational experiments only, the maximal angle and
the radius had to be adjusted to the specimen type. The radius
is given by the geometry of the specimen. The maximal angle is
estimated by the operator. For homogeneous specimens, such
as the tissue of the cerebellum, a relatively small angle has to
be selected to obtain reasonable results.

C© 2018 The Authors
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Table 2. Algorithm: deformable slide-to-volume registration.

Input: Histological image I and μCT 3D dataset V , RANSAC default
parameters (threshold = 10, # iterations 10 000, # cloud points
10’000), αjaw = π/8, αcereb = π/36
Output: Surface coefficients coptim

1. Find matching feature points between histological slide and each
image in the 3D μCT dataset

2. Create a binary 3D matrix out of the μCT corresponding points
3. Assign weights to each point and filter the 3D point cloud based

on weights and radius
4. Fit a plane into the filtered 3D cloud and extract matching μCT

slice
5. Register the histology and the μCT image in 2D
6. Find coefficients c0 of the plane in Legendre bases
7. Starting from c0, optimize the surface coefficients coptim using NMI

return coptim

2D-2D registration

Having obtained the plane normal vector coordinates ninit

from the previous step, we interpolate an image out of the
μCT dataset. In order to improve the slice position in 3D with
NMI, 2D-2D registration is required. Our 2D-2D automatic
registration framework is divided into two subsequent trans-
formations, first a coarse rigid transformation and then re-
finement with affine registration. Let I (x, y) and J (x, y) be
the histology image and theμCT image obtained from the ini-
tialization. Here, I : � ⊂ R2 → R and J : � ⊂ R2 → R. For
coarse registration, we use a very efficient approach, called the
RANSAC homography algorithm, which calculates the pro-
jective transformation matrix H between two images by using
two sets of corresponding points. We use SURF to identify new
corresponding points between the two images. Let {xI

n , yI
n },

{xJ
n , yJ

n } be the matching points from the SURF algorithm,
where n = 1, ..., N and N are numbers of putative matched
points in the two images. We are looking for a linear mapping
between the two sets of points that will satisfy the following
equation:

⎛
⎝

xJ
n

yJ
n

1

⎞
⎠ =

⎛
⎝

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

⎞
⎠

︸ ︷︷ ︸
:=H

⎛
⎝

xI
n

yI
n

1

⎞
⎠. (2)

The RANSAC homography algorithm solves the problem by
randomly picking four corresponding point pairs and calcu-
lating the transformation matrix. Then, it counts the number
of inliers, i.e. points that are mapped within a certain thresh-
old (t = 0.01 voxel length), from one image to another. If the
number of inliers is higher for one matrix than for the previous
best one, it saves it as a possibly better homography matrix.
The final matrix with the maximum number of inliers is pro-

duced after 10 000 iterations. This choice is a trade off between
robustness and speed.

The main limitation of this algorithm is that it very much de-
pends on the ratio of correctly versus wrongly matched pairs.
It may produce an unrealistic transformation if the supplied
points are incorrect. In some cases, the μCT images from the
initialization look quite dissimilar from the histology, which
on top of the multimodal nature of the images leads to a high
number of unreliable inliers. Hence, to improve the robustness
of the registration, we limit the transformation to rotation and
shifting, leaving only three degrees of freedom. Thus, the trans-
formation matrix becomes for any α ∈ [0,2π ]

⎛
⎝

xJ
n

yJ
n

1

⎞
⎠ =

⎛
⎝

cosα −sinα t1

sinα cosα t2

0 0 1

⎞
⎠

⎛
⎝

xI
n

yI
n

1

⎞
⎠ = S

⎛
⎝

xI
n

yI
n

1

⎞
⎠. (3)

For �x in the domain of image I , we define IS = I ◦ S−1(�x) :=
I (S−1�x) as an output histology image after rotation and trans-
lation. To find the new transformation matrix, we integrated
the Kabsch2 algorithm into the RANSAC framework. As soon
as the coarse rigid registration is obtained, we improve regis-
tration with an affine transformation T . The transformation
matrix T ∗ of the image in this case is determined by maximiz-
ing NMI between the histology image IS and the CT image J :

T ∗ = arg max
T

NMI[IS ◦ T −1, J ], (4)

where T is a matrix in the space of all the affine transformations
and NMI is calculated based on images’ marginal and joint
entropies E as

NMI = E (IS ◦ T −1) + E (J )
E (IS ◦ T −1, J )

. (5)

The final image is then calculated as IAS = IS ◦ (T ∗)−1. The
optimizer follows the ‘one plus one’ evolution strategy (Styner
et al., 2000). The maximum number of iterations of the opti-
mizer is set to 300, with an initial radius of 0.004. The num-
ber of histogram bins is calculated as the median value of the
Freedman–Diaconis, Scott’s and Sturges’ methods.

Deformable and rigid 2D-3D registration

After registering the histological image to the μCT image in
2D, we now exploit the benefit of mutual information, which
is a well-known similarity measure employed for multimodal
images. NMI takes into account a dense representation of
the image, whereas SURF compares only sparsely distributed
points. By using every pixel intensity, more sensitive regis-
tration is achieved. In an iterative optimization framework,

2 http://ch.mathworks.com/matlabcentral/fileexchange/25746-kabsch-

algorithm
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we calculate NMI between the histology and an image inter-
polated from a deformed surface in the μCT volume. Surface
deformations are calculated as the sum of a set of bases. With
this limited set of basis functions, we approximate a function
space for all possible deformations between the two modal-
ities. As basis functions, we use associated Legendre poly-
nomials P m

l (x) = (−1)m(1 − x2)m/2 d m

d xm Pl (x) on the interval

−1 ≤ x ≤ 1, where Pl (x) = 1
2l l ! [ d l

d xl (x2 − 1)l ] are nonassoci-
ated Legendre polynomials, l ∈ Z is a degree of the polynomial
and m = 0, ..., l is an order of the polynomial. Legendre poly-
nomials are solutions to the Legendre differential equation and
are spherical harmonics. The choice of Legendre polynomials
is based on their orthogonality, which enables linear least
squares of an independent system of equations. Furthermore,
they constrain surface deformations allowing for reasonable
slice transformations. However, one can choose other orthog-
onal polynomials as bases, depending on the deformation of
the specimen. Although B-splines are a commonly used basis
for nonrigid deformation, this is not a reasonable solution for
our case. B-spline is a piecewise deformation model for local
deformations which requires control points and consequently
brings a lot of degrees of freedom. This is not only computa-
tionally demanding, but it may also lead to unrealistic defor-
mations.

We built the Legendre basis functions on a regular grid in
the 3D Cartesian coordinate system. The first basis is the Leg-
endre polynomial of zero degree (l = 0), p1 = P 0

0 , which is a
plane parallel to the xy-plane. This basis accounts for shifting
along the z-axis. The next two bases are Legendre polynomi-
als of first degree (l = 1), p2 = P 0

1 , p3 = P 1
1 . The first order

P 0
1 , (m = 0) corresponds to an angled plane and the second

order P 1
1 (m = 1) corresponds to a paraboloid. These bases ac-

count for angulation of the plane and parabolic deformation of
the tissue. We enrich our bases with p4 = P 0

2 , p5 = P 2
3 , p6 =

P 0
4 , p7 = P 1

4 , p8 = P 1
5 Legendre polynomials. In total, we ob-

tain 15 bases P = ⋃15
k=1 pk , including the transposed ones of

each basis except the first one. The initial search starts from
the plane obtained from the initialization step. We represent
this plane with our base functions and extract associated co-
efficients. Let F = f (x, y) be the plane obtained from fitting
RANSAC to the matching points. To represent this function
with Legendre polynomials, we sample randomly M times this
plane F1 = f (x1, y1), ..., FM = f (xM, yM) and obtain a vector
ψ = [F1, ..., FM]T ∈ R of z coordinates that lie on this plane.
The same x, y coordinates of the sample points are then used
to select z-values of the Legendre basis functions. Thus, for
each basis, we obtain a vector p̃k = [ pk (x1, y1)...pk (xM, yM)]T .
Therefore, the plane can be represented in Legendre
bases as ψ = ∑15

k=1 ck p̃k , where ck ∈ R are the basis
coefficients.

We calculate the coefficients as a least square solution of a
system of linear equations. These coefficients are then provided
as arguments in an optimization framework which maximizes
NMI.

Table 3. Median errors for the rigid NMI-based registration.

Dataset # 1 2 3 4 5 6 7 8

Tilting angle error [deg] 1.4 0.6 0.9 0.3 0.8 1.9 0.7 0.6
Distance error [μm] 36 7 12 2 8 34 8 8

coptim = arg max
c

NMI[J (c), IAS], (6)

where J (c) is an interpolated image from a surface obtained
with p̃k basis functions. As an optimization algorithm, we use
a bounded version of the Nelder–Mead simplex direct search3,
which is one the best solutions for non-smooth objective func-
tions (Maes et al., 1999; Wachowiak et al., 2004). The Nelder–
Mead simplex is a local optimizer that provides accurate results
when the initial orientation is close to the true transformation.
To increase the search space, we initialize the optimization
with 20 random planes close to the initialization plane. After
20 iterations, we choose the one with the highest NMI.

In this work, we explore both rigid and nonlinear defor-
mation models. The difference between them is the number
of bases in the optimization. For rigid 2D-3D registration, we
take only the three Cartesian bases x, y, z. Therefore, the rigid
pipeline optimizes the normal vector coordinates to the plane
�n = [A B C ]T . For nonlinearly deformable surfaces, we use
the Legendre polynomials. The following constraints are used
in both frameworks. The plane angle is set to αjaw and αcereb
for the corresponding data, and the shift along the vertical
axis is ±80 slices. The brute force constraints lie in the same
interval. We also limit the Legendre bases to exploit only feasi-
ble deformations [104,104,104,5 · 103,102,102] for the p3

until p8 correspondingly.

Results

Jaw bone dataset - the rigid registration framework

The rigid NMI-based registration framework was evaluated
on jaw bone datasets. The histological slides in these datasets
contained only limited nonrigid deformations perpendicular
to the cutting plane, due to the presence of hard, bony tis-
sue. Therefore, for these datasets, it was sufficient to perform
rigid registration. To assess the performance of the framework
quantitatively, we calculated the angle between the normal
vector obtained with optimization and the manually found ex-
ample (Table 3), which gave us an idea of how well the tilting of
the plane had been determined with the method. We also com-
puted the distance between the two planes to determine how
far the found plane was from the ground truth. We calculated
the distances from the origin along the z-axis for the optimized
plane and the ground truth, and then we subtracted them

3 http://ch.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd–

fminsearchcon
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from each other. The median values of these errors for eight
datasets are summarized in Table 3. Manual registrations were
subsequently improved by four experts, which is regarded as
the ground truth in this study. In addition, to evaluate the
variability of the ground truth, we calculated mean standard
variation of further manual registration values for four his-
tological slides. Deviation of vertical position was seven slices
and of the tilting angle was 2◦. As the high-resolution CT data
exhibit many anatomical details, the manual results were very
similar to histological images (see Khimchenko (2016)).

The method accurately determined the tilting angle of the
plane. Indeed, the angle error did not exceed 1.4◦. The median
distance error for the optimized rigid registration was also very
low for most of the datasets. The largest errors were in the first
and sixth datasets, 36 and 34 μm, respectively. From a vi-
sual assessment, we consider a distance error of 60 μm as a
reasonable registration. This length corresponds to the size of
the characteristic anatomical structures of the human jaw, i.e.
the Haversian canals with a diameter of about 60 μm. There-
fore, according to this assessment, our algorithm registered
well 47 out of 58 histological slides. The time needed for the
linear interpolation of a 2D image from a 3D volume grows as
O (N ), where N is the number of voxels in the 3D datasets.
We compared the computational effort of two datasets from the
same patient E, where two pieces of the biopsy were processed
separately. The average computational time for registering
one histological slide in a volume of 621 × 621 × 1269 vox-
els was 26.2 min (3.6 min for SURF) compared to 2.8 min
(0.3 min for SURF) in a 301 × 301 × 507 voxel dataset. Con-
sequently, a 10 times larger volume gives rise to an increase of
the computational effort by a factor of approximately nine. All
the calculations were performed sequentially in MATLAB

R©

R2016a on Ubuntu 15.10 with 64 GB of RAM and Intel
R©

Xeon E5-2620 v3 (6 cores, 2.4 GHz/3.2 GHz Turbo).
To determine if the new pipeline had improved the initial

matching, we compared the SURF-based and the rigid NMI-
based pipelines with the ground truth. We calculated the tilting
error and the distance error for both methods (Fig. 2).

From the comparative distance errors, one can see that in
the majority of the cases, slice localization improved. Further-
more, the dispersion of the results decreased, which suggests
a more stable behaviour. However, for the first dataset, there
is a small deterioration. This dataset had a very high resolu-
tion, so there were several reasonable registration positions.
Hence, for most of the histologies, the difference in registra-
tion between the two methods was not significant. The largest
improvement was achieved in dataset #7, e.g. the distance
error dropped from 251 to 0 μm. The method shows a gen-
eral improvement for the tilting angle. The median error for
the tilting angle does decrease, but there are outliers in some
of the datasets. This is due to poor 2D-2D registration when
the found initialization slice was far from the ground truth.
Two examples of histological sections along with the registra-
tion results from both methods are shown in Figure 3. The
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Fig. 2. Comparative error for the position (A) and the angle (B) of the plane
for eight jawbone datasets. On the x-axis are shown the performance of the
SURF- (left) and NMI (right)-based methods for each dataset. The median
values are shown as black horizontal lines inside the boxes, 25th and 75th

percentiles as bottom and top lines of the box, minimum and maximum
values as bottom and top whiskers.

first method found a relevant match for the histology, but
there are numerous local dissimilarities between the images.
The nonparametric significance test shows that the pipeline
with optimization improves registration (Kruskal–Wallis test
p-value = 0.0013).

In datasets #9 and #10, the proposed method with the
default setup failed to find a reasonable registration for the
majority of the slides due to a large tilting angle of approxi-
mately 20◦ combined with an additional issue. For dataset #9,
the registration was successful after having adjusted the con-
trast of the individual histological slides or a rotation of the
CT data to match the histological cutting direction (Stalder
et al., 2014). The broken specimen of dataset #10 showed
an incomplete cylindrical shape and required a rotation of
the CT data or an adaptation of the filter radius for a suc-
cessful registration. The illumination invariance of the SURF
descriptor could not account for a 100 gray value difference.
Furthermore, in one of these datasets, on top of the high titling
angle (22◦), X-ray absorption values differed for the same tis-
sue in the bottom of the specimen and on the top. This is why
it was especially challenging to register this dataset and the
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Fig. 3. Comparative slide registration for the datasets #4 (right) and #7
(left).

approach found only one reasonable registration out of four.
In the dataset #2, however, the algorithm localized two his-
tological images which were only one slice away from the
ground truth. Also, the distance error for one histological slide
in the dataset #8 would not fit into the boxplot region, and so
it was removed for better visualization.

Jaw bone dataset - the deformable registration framework using
simulations

Additionally, we evaluated the deformable registration frame-
work on the jawbone datasets, using simulation. We created
artificial histological slides by simulating deformed surfaces in
3D space. With these surfaces, we extracted an image from
the μCT volume, following which we used this image as an

artificial histology section and ran it through the entire NMI-
based deformable pipeline. An example of the surface and the
resulting fit of the deformable pipeline for two artificial his-
tologies is shown in Figure 4. With a color bar, we show the
distance difference between the found surface and the artificial
ground truth. In total, we evaluated five histological slides, and
on average it took 58 min per slide. The maximum difference
in the region of interest did not exceed 50 μm.

Cerebellum datasets - the deformable registration framework

In contrast to the bone data, the cerebellum specimen in-
cluded large non-linear deformations (Hieber et al., 2016;
Khimchenko et al., 2016). Hence, we evaluated the deformable
registration framework on this dataset. In total, four histolog-
ical sections were available. The average computation time
for one slide grew to 6.8 h, owing to the effort in optimization
that is required to determine the deformations. In addition,
the homogeneity of the tissue requires a larger number of
optimization steps. For a quantitative assessment, we com-
pared distances from the found surface to the manually found
landmarks (Fig. 5). Manual registration was based on point-
to-point correspondence of characteristic features such as ves-
sels, cell groups and cracks. Then, a polynomial surface using
the Matlab Curve Fitting Toolbox was fitted into the points. In
three out of four histological slides, there was an improvement
in registration. The median distance error improved by 33μm
for all slides. For the histology #2, registration did not improve
as the result of an image artefact. The histological section was
cut from the top part of the specimen, where the tomography
slices were distorted and part of the volume was removed.

Figure 6 shows an example of the first histological image and
corresponding slices found with both approaches. The SURF-
based method found a slice which was 0.8 mm away from the
manual surface for more than half of the histology. Moreover,
the deformable fit improved registration by reducing the area
of high distance difference. Even though the median distance
from the manual landmarks increased by 21.6 μm, the over-
all registration of this histological slide improved, due to the
decreased dispersion of the distances.

Discussion

The proposed algorithm is a coarse-to-fine registration tech-
nique that starts with the localization of a sectioning plane and
finishes with the complete registration of 2D histology into the
3D space. Although hard X-ray tomography provides the 3D
spatial distribution of the X-ray attenuation coefficients, the
histology images exhibit the 2D spatial distribution of the stain
intensity integrated perpendicular to the slide. Therefore, the
contrast mechanisms are complementary. In order to exclude
the impact of the contrast mechanisms, intentionally distorted
CT slices were registered to the measured 3D CT data. This ap-
proach permits the error estimation excluding the impact of
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Fig. 4. Optimized fitting surfaces for the simulated histological slides colored according to the distance error from the ground truth. The voxel positions
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each section. The median values are shown as black horizontal lines inside
the boxes, 25th and 75th percentiles as bottom and top lines of the box,
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the contrast mechanism and precise error can be evaluated
because the ground truth is predefined. The application of the
proposed method is not limited to histology toμCT registration
– it can be applied easily to any slide-to-volume registration
(Markelj et al., 2012). For example, another interesting po-
tential application is registering 2D histology to 3D MRI data
(Dauguet et al., 2007; Liu et al., 2012; Goubran et al., 2015).
The important feature of our approach is that in contrast to
other methods, it does not require any segmentation or other
data-dependent preprocessing for images of the same size.

Overall, the method showed high accuracy in slice local-
ization. Indeed, it allocated 47 out of 58 histological slides
with high precision (distance error < 62 μm). Furthermore,
after visual inspection, we identified that eight more slices
were in fact close to the ground truth position (distance

Histology Manual

SURF based NMI based

0 1
Distance (mm)

1 mm

Fig. 6. Comparative slide registration for the first slide colored according
to the distance error from the ground truth.

error < 1 mm). The median registration error for the 10 jaw
bone volumes of 8.4 μm is well below the slide thickness of
300 μm and below the near-surface region that contributes
to the stain intensity of the histology slide. Hence, one can
conclude that the proposed procedure provides a sound reg-
istration result. The identification of the correct cutting angle
correlates with the correct localization of the slide; indeed, the
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improvement in the tilting angle shows a pattern similar to
the distance error improvement (Fig. 2), whereas deformable
registration shows high accuracy in simulations, even for
highly deformed artificial slices. The distance from the ground
truth surface was less than 20 μm for the majority of the
slices.

The initialization provides a plane in the 3D dataset where
the most matching points are found. To accelerate the later
optimization based on NMI, the histology slide should be reg-
istered rigidly to the obtained CT slice. Unfortunately, as this
step relies on feature correspondences and the heuristic trans-
formation matrix calculation, the resulting 2D-2D registration
can vary for different iterations. The solution to this problem is
either visual inspection or parameter optimization. However,
in the majority of cases, the result of initialization is of sufficient
quality and the algorithm does not need any intervention. Ad-
ditional improvements to this step could be achieved with one
of the multimodal histology 2D-2D registration algorithms (Ja-
cobs et al., 1999; du Bois d’Aische et al., 2005; Li et al., 2006;
Pitiot et al., 2006; Hallack et al., 2015).

Another limitation of our method is that it uses the SURF
algorithm for feature detection. This descriptor is built using
the neighbourhood gradient around the keypoint. Hence, low-
contrast images or images of mostly homogeneous tissue are
likely to produce a lot of false matching points, which in turn
hampers registration. One potential solution is to use another
feature detector (Self-Similarity (Shechtman & Irani, 2007),
ORB (Rublee et al., 2011), etc.) or image preprocessing, for
example, by attenuating the illumination difference between
grayscale histology and μCT images.

Furthermore, output-matching slices after the SURF-based
method can vary somewhat, depending on the parameters –
sensitive parameters are the filter radius and the plane angu-
lation constraints. For example, in dataset #4, the registration
could not be achieved without radial filtering of the point cloud.
With adjusted values, however, we were able to register all of
the histological slides accurately.

The computation time of the algorithm is dominated by
the optimization part of the method. Therefore, the method
could benefit from faster 3D pixel interpolation approaches.
Another possible improvement to 2D-3D optimization could
be achieved by using a global optimizer such as swarm (Wa-
chowiak et al., 2004), which would make the time-consuming
brute-force search unnecessary or by patch-wise registration
(Ferrante & Paragios, 2013). Computational speed-up can be
also attained by implementing the pipeline in C++, using par-
allel programming.

In conclusion, we have proposed a fully automatic approach
for multi-modal 2D-3D registration which combines feature-
and intensity-based approaches to accurately register a 2D
slice to volume data. We have also demonstrated the high
accuracy and reliability of the method and outlined potential
applications beyond the particular histology-μCT registration
analyzed herein.
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registration methods for image-guided interventions. Med. Image Anal.
16(3), 642–661.

Meyer, C.R., Moffat, B.A., Kuszpit, K., Bland, P.L., Chenevert, T., Rehem-
tulla, A. & Ross, B. (2006) A methodology for registration of a his-
tological slide and in vivo MRI volume based on optimizing mutual
information. Mol. Imaging 5(1), 16–23.

Mosaliganti, K., Pan, T., Sharp, R. et al. (2006) Registration and 3D visu-
alization of large microscopy images. Proc. SPIE 6144, 61442V.

Müller, B., Deyhle, H., Lang, S., Schulz, G., Bormann, T., Fierz, F.C. &
Hieber, S.E. (2012) Three-dimensional registration of tomography data
for quantification in biomaterials science. Int. J. Mater. Res. 103(2),
242–249.

Nir, G. & Salcudean, S.E. (2013) Registration of whole-mount histology
and tomography of the prostate using particle filtering. Proc. SPIE 8676,
86760E.

Osechinskiy, S. & Kruggel, F. (2010) Slice-to-volume nonrigid registration
of histological sections to MR images of the human brain. Anat. Res. Int.
287860, 1–7.

Ou, Y., Shen, D., Feldman, M., Tomaszewski, J. & Davatzikos, C. (2009)
Non-rigid registration between histological and MR images of the
prostate: a joint segmentation and registration framework. In IEEE
Computer Vision and Pattern Recognition Workshops, pp. 125–132.

Ourselin, S., Bardinet, E., Dormont, D. et al. (2001) Fusion of histological
sections and MR images: towards the construction of an atlas of the
human basal ganglia. In Lecture Notes of Computer Science - MICCAI
2001, vol. 2208, pp. 743–751.

Pardasani, U., Baxter, J.S., Peters, T.M. & Khan, A.R. (2016) Single slice
US-MRI registration for neurosurgical MRI-guided US. Proc. SPIE 9786,
97862D.

Park, H., Piert, M.R., Khan, A., Shah, R., Hussain, H., Siddiqui, J., Chenev-
ert, T.L. & Meyer, C.R. (2008) Registration methodology for histologi-
cal sections and in vivo imaging of human prostate. Acad. Radiol. 15(8),
1027–1039.

Particelli, F., Mecozzi, L., Beraudi, A., Montesi, M., Baruffaldi, F. & Vice-
conti, M. (2012) A comparison between micro-CT and histology for the
evaluation of cortical bone: effect of polymethylmethacrylate embed-
ding on structural parameters. J. Microsc. 245(3), 302–310.

C© 2018 The Authors
Journal of Microscopy C© 2018 Royal Microscopical Society, 271, 49–61



D E F O R M A B L E R E G I S T R A T I O N F R O M H I S T O L O G Y T O V O L U M E D A T A 6 1

Pitiot, A., Bardinet, E., Thompson, P.M. & Malandain, G. (2006) Piecewise
affine registration of biological images for volume reconstruction. Med.
Image Anal. 10, 465–483.

Pluim, J.P., Maintz, J.A., Viergever, M. et al. (2003) Mutual-information-
based registration of medical images: a survey. IEEE Trans. Med. Imaging
22(8), 986–1004.

Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. (2011) ORB: an efficient
alternative to SIFT or SURF. In IEEE International Conference on Computer
Vision (ICCV 2011), pp. 2564–2571.

Sarve, H., Lindblad, J. & Johansson, C.B. (2008) Registration of 2D his-
tological images of bone implants with 3D SRμCT volumes. Adv. Vis.
Comput. 5358, 1071–1080.

Schormann, T., Dabringhaus, A. & Zilles, K. (1995) Statistics of deforma-
tions in histology and application to improved alignment with MRI.
IEEE Trans. Med. Imaging 14(1), 25–35.

Schormann, T. & Zilles, K. (1998) Three-dimensional linear and nonlinear
transformations: an integration of light microscopical and MRI data.
Hum. Brain Mapp. 6(5–6), 339–347.

Schulz, G., Crooijmans, H., Germann, M., Scheffler, K., Müller-Gerbl, M.,
Bikis, C. & Müller, B. (2011) Three-dimensional strain fields in human
brain resulting from formalin fixation. J. Neurosci. Methods 202, 17–27.

Schulz, G., Waschkies, C., Pfeiffer, F., Zanette, I., Weitkamp, T., David, C. &
Müller, B. (2012) Multimodal imaging of human cerebellum-merging
X-ray phase microtomography, magnetic resonance microscopy and
histology. Sci. Rep. 2, 826–833.

Seise, M., Alhonnoro, T., Kolesnik, M. et al. (2011) Interactive registra-
tion of 2D histology and 3D CT data for assessment of radiofrequency
ablation treatment. J. Pathol. Inform. 2(2), 9.

Shechtman, E. & Irani, M. (2007) Matching local self-similarities across
images and videos. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2007), pp. 18–23.

Stalder, A.K., Ilgenstein, B., Chicherova, N., Deyhle, H., Beckmann, F.,
Müller, B. & Hieber, S.E. (2014) Combined use of micro computed

tomography and histology to evaluate the regenerative capacity of
bone grafting materials. Int. J. Mater. Res. 105(7), 679–691.

Studholme, C., Hill, D.L. & Hawkes, D.J. (1999) An overlap invariant en-
tropy measure of 3D medical image alignment. Pattern Recognit. 32(1),
71–86.
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